Utvidet returrett til 31. januar 2025

Nature's Patterns and the Fractional Calculus

Om Nature's Patterns and the Fractional Calculus

Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system¿s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system¿s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783110534115
  • Bindende:
  • Hardback
  • Sider:
  • 213
  • Utgitt:
  • 11. september 2017
  • Vekt:
  • 505 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 19. desember 2024

Beskrivelse av Nature's Patterns and the Fractional Calculus

Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system¿s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system¿s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences.

Contents
Complexity
Empirical allometry
Statistics, scaling and simulation
Allometry theories
Strange kinetics
Fractional probability calculus

Brukervurderinger av Nature's Patterns and the Fractional Calculus



Finn lignende bøker
Boken Nature's Patterns and the Fractional Calculus finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.