Utvidet returrett til 31. januar 2025

Biogeochemistry of Soil Organic Matter

Om Biogeochemistry of Soil Organic Matter

Benefits of MOS in conservation management systems: Physical (structure and aggregation) forming larger structures that favor the root system of cultivated plants.Chemical: By improving the CEC of soils, complexing exchangeable aluminum and reducing the adsorption of P. This is especially helpful in Brazil's tropical soils.Biological: Promotes soil microbiota and enzymesSoil management involving mechanical intervention (plowing, harrowing, scarification, etc.) breaks up soil aggregates, macro- and micro-aggregates, increasing the area of exposure of MOS to microbial attack. In addition, with greater aeration, micro-organisms attack this MOS more easily and contribute to its mineralization.  Grass residues have a higher C/N ratio, often above 30/1, which is why the balance between immobilization and mineralization tends towards microbial immobilization, until this C/N ratio becomes narrower, at which point this balance will tend towards mineralization. Soybean waste has a narrower C/N ratio, below 20/1, which makes mineralization the predominant process

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9786207270552
  • Bindende:
  • Paperback
  • Utgitt:
  • 15. mars 2024
  • Dimensjoner:
  • 152x229x4 mm.
  • Vekt:
  • 118 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 18. desember 2024

Beskrivelse av Biogeochemistry of Soil Organic Matter

Benefits of MOS in conservation management systems: Physical (structure and aggregation) forming larger structures that favor the root system of cultivated plants.Chemical: By improving the CEC of soils, complexing exchangeable aluminum and reducing the adsorption of P. This is especially helpful in Brazil's tropical soils.Biological: Promotes soil microbiota and enzymesSoil management involving mechanical intervention (plowing, harrowing, scarification, etc.) breaks up soil aggregates, macro- and micro-aggregates, increasing the area of exposure of MOS to microbial attack. In addition, with greater aeration, micro-organisms attack this MOS more easily and contribute to its mineralization.  Grass residues have a higher C/N ratio, often above 30/1, which is why the balance between immobilization and mineralization tends towards microbial immobilization, until this C/N ratio becomes narrower, at which point this balance will tend towards mineralization. Soybean waste has a narrower C/N ratio, below 20/1, which makes mineralization the predominant process

Brukervurderinger av Biogeochemistry of Soil Organic Matter



Finn lignende bøker
Boken Biogeochemistry of Soil Organic Matter finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.