Utvidet returrett til 31. januar 2025

Theory of NP Spaces

Om Theory of NP Spaces

This monograph provides a comprehensive study of a typical and novel function space, known as the $\mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $\mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $\mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $\mathbb{D}$ and open unit ball $\mathbb{B}$ by presenting families of entire functions in the complex plane $\mathbb{C}$ and in higher dimensions. The Theory of $\mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783031397035
  • Bindende:
  • Paperback
  • Sider:
  • 258
  • Utgitt:
  • 10. oktober 2023
  • Dimensjoner:
  • 170x244x14 mm.
  • Vekt:
  • 435 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 20. desember 2024

Beskrivelse av Theory of NP Spaces

This monograph provides a comprehensive study of a typical and novel function space, known as the $\mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $\mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $\mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $\mathbb{D}$ and open unit ball $\mathbb{B}$ by presenting families of entire functions in the complex plane $\mathbb{C}$ and in higher dimensions. The Theory of $\mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.

Brukervurderinger av Theory of NP Spaces



Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.