Utvidet returrett til 31. januar 2025

Statistical Learning with Sparsity

- The Lasso and Generalizations

Om Statistical Learning with Sparsity

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. The authors cover the lasso for linear regression, generalized penalties, numerical methods for optimization, statistical inference methods for fitted (lasso) models, sparse multivariate analysis, graphical models, compressed sensing, and much more.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781498712163
  • Bindende:
  • Hardback
  • Sider:
  • 367
  • Utgitt:
  • 7. mai 2015
  • Dimensjoner:
  • 163x244x22 mm.
  • Vekt:
  • 742 g.
  • BLACK NOVEMBER
  På lager
Leveringstid: 4-7 virkedager
Forventet levering: 6. desember 2024

Beskrivelse av Statistical Learning with Sparsity

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. The authors cover the lasso for linear regression, generalized penalties, numerical methods for optimization, statistical inference methods for fitted (lasso) models, sparse multivariate analysis, graphical models, compressed sensing, and much more.

Brukervurderinger av Statistical Learning with Sparsity



Finn lignende bøker
Boken Statistical Learning with Sparsity finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.