Utvidet returrett til 31. januar 2025

Spectroscopy of Mott Insulators and Correlated Metals

- Proceedings of the 17th Taniguchi Symposium Kashikojima, Japan, October 24 28, 1994

Om Spectroscopy of Mott Insulators and Correlated Metals

I Theory of Mott Transition and Correlated Metals.- Classification Scheme of the Metal-Insulator Transition and Anomalous Metals.- The Mott Transition: Results from Mean-Field Theory.- Some Aspects of Spin Gap in One- and Two-Dimensional Systems.- Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight.- Almost Localized Fermions and Mott-Hubbard Transitions at Non-Zero Temperature.- Anomalous Physical Properties Around Magnetic and Metal-Insulator Transitions - A Spin-Fluctuation Theory.- Exact Diagonalization Study of Strongly Correlated Electron Models: Hole Pockets and Shadow Bands in the Doped t - J Model.- II Electronic Structure.- Electronic Band Structures of LaMO3 (M = Ti, V, Cr, ..., Ni, Cu) in the Local Spin-Density Approximation.- First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: LDA + U Method.- Unrestricted Hartree-Fock Study of Perovskite-iype Transition-Metal Oxides.- Electronic Structure of Transition Metal Compounds.- Core-Level Spectroscopy in Early-Transition-Metal Compounds.- Systematics of Optical Gaps in Perovskite-iype 3d Transition Metal Oxides.- III Charge Transport and Excitations.- Optical Spectroscopy on the Mott Transition in Perovskiteiype Titanates.- Spectral Weight Transfer and Mass Renormalization in Correlated d-Electron Systems.- Charge Transport Properties of Strongly Correlated Metals near Charge Transfer Insulator to Metal Transition.- Infrared Studies of Kondo Insulator and Related Compounds.- IV Magnetic Response.- Magnetic Correlations in Doped Transition-Metal Oxides.- Spin and Charge Differentiation in Doped CuO2 Planes Observed by Cu NMR/NQR Spectra.- Orbital-Spin Coupling in V2O3 and Related Oxides.- Magnetic and Transport Properties of the Kondo Lattice Model with Ferromagnetic Exchange Coupling.- V New Materials.- Superconductivity, Magnetism and Metal-Insulator Transitions in Some Ternary and Pseudoternary 3d-, 4d-, and 5d-Metal Oxides.- NMR Studies of Superconductivity and Metal-Insulator Transition in Cu Spinel CuM2X4 (M = Rh, Ir and X = S, Se).- Index of Contributors.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783540589716
  • Bindende:
  • Hardback
  • Sider:
  • 288
  • Utgitt:
  • 19. september 1995
  • Dimensjoner:
  • 156x234x18 mm.
  • Vekt:
  • 581 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 8. desember 2024

Beskrivelse av Spectroscopy of Mott Insulators and Correlated Metals

I Theory of Mott Transition and Correlated Metals.- Classification Scheme of the Metal-Insulator Transition and Anomalous Metals.- The Mott Transition: Results from Mean-Field Theory.- Some Aspects of Spin Gap in One- and Two-Dimensional Systems.- Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight.- Almost Localized Fermions and Mott-Hubbard Transitions at Non-Zero Temperature.- Anomalous Physical Properties Around Magnetic and Metal-Insulator Transitions - A Spin-Fluctuation Theory.- Exact Diagonalization Study of Strongly Correlated Electron Models: Hole Pockets and Shadow Bands in the Doped t - J Model.- II Electronic Structure.- Electronic Band Structures of LaMO3 (M = Ti, V, Cr, ..., Ni, Cu) in the Local Spin-Density Approximation.- First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: LDA + U Method.- Unrestricted Hartree-Fock Study of Perovskite-iype Transition-Metal Oxides.- Electronic Structure of Transition Metal Compounds.- Core-Level Spectroscopy in Early-Transition-Metal Compounds.- Systematics of Optical Gaps in Perovskite-iype 3d Transition Metal Oxides.- III Charge Transport and Excitations.- Optical Spectroscopy on the Mott Transition in Perovskiteiype Titanates.- Spectral Weight Transfer and Mass Renormalization in Correlated d-Electron Systems.- Charge Transport Properties of Strongly Correlated Metals near Charge Transfer Insulator to Metal Transition.- Infrared Studies of Kondo Insulator and Related Compounds.- IV Magnetic Response.- Magnetic Correlations in Doped Transition-Metal Oxides.- Spin and Charge Differentiation in Doped CuO2 Planes Observed by Cu NMR/NQR Spectra.- Orbital-Spin Coupling in V2O3 and Related Oxides.- Magnetic and Transport Properties of the Kondo Lattice Model with Ferromagnetic Exchange Coupling.- V New Materials.- Superconductivity, Magnetism and Metal-Insulator Transitions in Some Ternary and Pseudoternary 3d-, 4d-, and 5d-Metal Oxides.- NMR Studies of Superconductivity and Metal-Insulator Transition in Cu Spinel CuM2X4 (M = Rh, Ir and X = S, Se).- Index of Contributors.

Brukervurderinger av Spectroscopy of Mott Insulators and Correlated Metals



Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.