Om Orthogonal Polynomials
Part I: Introduction to Orthogonal Polynomials.- An Introduction to Orthogonal Polynomials.- Classical Continuous Orthogonal Polynomials.- Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal Polynomials.- Properties and Applications of the Zeros of Classical Continuous Orthogonal Polynomials.- Inversion, Multiplication and Connection Formulae of Classical Continuous Orthogonal Polynomials.- Classical Orthogonal Polynomials of a Discrete and a q-Discrete Variable.- Computer Algebra, Power Series and Summation.- On the Solutions of Holonomic Third-Order Linear Irreducible Differential Equations in Terms of Hypergeometric Functions.- The Gamma Function.- Part II: Recent Research Topics in Orthogonal Polynomials and Applications.- Hypergeometric Multivariate Orthogonal Polynomials.- Signal Processing, Orthogonal Polynomials, and Heun Equations.- Some Characterization Problems Related to Sheffer Polynomial Sets.- From Standard Orthogonal Polynomials to Sobolev Orthogonal Polynomials: The Role of Semiclassical Linear Functionals.- Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization.- Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations.- (R, p, q)-Rogers-Szegö and Hermite Polynomials, and Induced Deformed Quantum Algebras.- Zeros of Orthogonal Polynomials.- Properties of Certain Classes of Semiclassical Orthogonal Polynomials.- Orthogonal Polynomials and Computer Algebra.- Spin Chains, Graphs and State Revival.- An Introduction to Special Functions with Some Applications to Quantum Mechanics.- Orthogonal and Multiple Orthogonal Polynomials, Random Matrices, and Painlevé Equations.
Vis mer