Utvidet returrett til 31. januar 2025

Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts

Om Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts

A foundational account of a new construction in the p-adic Langlands correspondence Motivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazur’s formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize étale (ϕ, Γ)-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the Breuil–Mézard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780691241357
  • Bindende:
  • Paperback
  • Sider:
  • 312
  • Utgitt:
  • 13. desember 2022
  • Dimensjoner:
  • 157x232x21 mm.
  • Vekt:
  • 482 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 13. desember 2024

Beskrivelse av Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts

A foundational account of a new construction in the p-adic Langlands correspondence
Motivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazur’s formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize étale (ϕ, Γ)-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the Breuil–Mézard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.

Brukervurderinger av Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts



Finn lignende bøker
Boken Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.