Norges billigste bøker

Methods of Mathematical Oncology

- Fusion of Mathematics and Biology, Osaka, Japan, October 26-28, 2020

Om Methods of Mathematical Oncology

PART 1: Mathematical Modeling: D. Guan, X. Luo, and H. Gao, Constitutive Modelling of Soft Biological Tissue from Ex Vivo to In Vivo: Myocardium as an Example.- T. Colin, T. Michel, and C. Poignard, Mathematical Modeling of Gastro-intestinal Metastasis Resistance to Tyrosine Kinase Inhibitors.- Y. Tanaka and T. Yasugi, Mathematical Modeling and Experimental Verification of the Proneural Wave.- D. Kumakura and S. Nakaoka, Exploring Similarity between Embedding Dimension of Time-series Data and Flows of an Ecological Population Model.- T. Hayashi, Mathematical Modeling for Angiogenesis.- S. Collin, Corridore and C. Poignard, Floating Potential Boundary Condition in Smooth Domains in an Electroporation Context.- N. L. Othman and T. Suzuki, Free Boundary Problem of Cell Deformation and Invasion.- L. Preziosi and M. Scianna, Multi-level Mathematical Models for Cell Migration in Confined Environments.- S. Magi, Mathematical Modeling of Cancer Signaling Addressing Tumor Heterogeneity.- N. Sfakianakis and Mark A.J. Chaplain, Mathematical Modelling of Cancer Invasion: A Review.- T. Williams, A. Wilson, and N. Sfakianakis, The First Step towards the Mathematical Understanding of the Role of Matrix Metalloproteinase-8 in Cancer Invasion.- PART II: Biological Prediction: T. Ito, T. Suzuki, and Y. Murakami, Mathematical Modeling of the Dimerization of EGFR and ErbB3 in Lung Adenocarcinoma.- H. Kubota, Selective Regulation of the Insulin-Akt Pathway by Simultaneous Processing of Blood Insulin Pattern in the Liver.- D. Oikawa, N. Hatanaka, T. Suzuki, and F. Tokunaga, Mathematical Simulation of Linear Ubiquitination in T Cell Receptor-mediated NF-╬║B Activation Pathway.- Y. Ito, D. Minerva, S. Tasaki, M. Yoshida, T. Suzuki, and A. Goto, Time Changes in the VEGF-A Concentration Gradient Lead Neovasculature to Engage in Stair-like Growth.- N. Hatanaka, M. Futakuchi, and T. Suzuki, Mathematical Modeling of Tumor Malignancy in Bone Microenvironment.- M. Yamamoto and Jun-ichiro Inoue, Signaling Networks Involved in the Malignant Transformation of Breast Cancer.- PART III: Data Science: R. Morishita, H. Takahashi, and T. Sawasaki, Cell-free Based Protein Array Technology.- Y. Nojima and Y. Takeda, Omics Data Analysis Tools for Biomarker Discovery and the Tutorial.- M. Oyama and H. Kozuka-Hata, Integrative Network Analysis of Cancer Cell Signaling by High-resolution Proteomics.- N. Nakamura and R. Yamada, Distance-matrix-based Extraction of Motility Features from Functionally Heterogeneous Cell Populations.- S. Kawasaki, H. Hayashi, and Y. Tominaga, Data Analytic Study of Genetic Mechanism of Ovarian Carcinoma from Single Cell RNA-seq Data.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9789811648656
  • Bindende:
  • Hardback
  • Sider:
  • 308
  • Utgitt:
  • 22. august 2021
  • Utgave:
  • 12021
  • Dimensjoner:
  • 155x235x0 mm.
  • Vekt:
  • 653 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 22. januar 2025

Beskrivelse av Methods of Mathematical Oncology

PART 1: Mathematical Modeling: D. Guan, X. Luo, and H. Gao, Constitutive Modelling of Soft Biological Tissue from Ex Vivo to In Vivo: Myocardium as an Example.- T. Colin, T. Michel, and C. Poignard, Mathematical Modeling of Gastro-intestinal Metastasis Resistance to Tyrosine Kinase Inhibitors.- Y. Tanaka and T. Yasugi, Mathematical Modeling and Experimental Verification of the Proneural Wave.- D. Kumakura and S. Nakaoka, Exploring Similarity between Embedding Dimension of Time-series Data and Flows of an Ecological Population Model.- T. Hayashi, Mathematical Modeling for Angiogenesis.- S. Collin, Corridore and C. Poignard, Floating Potential Boundary Condition in Smooth Domains in an Electroporation Context.- N. L. Othman and T. Suzuki, Free Boundary Problem of Cell Deformation and Invasion.- L. Preziosi and M. Scianna, Multi-level Mathematical Models for Cell Migration in Confined Environments.- S. Magi, Mathematical Modeling of Cancer Signaling Addressing Tumor Heterogeneity.- N. Sfakianakis and Mark A.J. Chaplain, Mathematical Modelling of Cancer Invasion: A Review.- T. Williams, A. Wilson, and N. Sfakianakis, The First Step towards the Mathematical Understanding of the Role of Matrix Metalloproteinase-8 in Cancer Invasion.- PART II: Biological Prediction: T. Ito, T. Suzuki, and Y. Murakami, Mathematical Modeling of the Dimerization of EGFR and ErbB3 in Lung Adenocarcinoma.- H. Kubota, Selective Regulation of the Insulin-Akt Pathway by Simultaneous Processing of Blood Insulin Pattern in the Liver.- D. Oikawa, N. Hatanaka, T. Suzuki, and F. Tokunaga, Mathematical Simulation of Linear Ubiquitination in T Cell Receptor-mediated NF-╬║B Activation Pathway.- Y. Ito, D. Minerva, S. Tasaki, M. Yoshida, T. Suzuki, and A. Goto, Time Changes in the VEGF-A Concentration Gradient Lead Neovasculature to Engage in Stair-like Growth.- N. Hatanaka, M. Futakuchi, and T. Suzuki, Mathematical Modeling of Tumor Malignancy in Bone Microenvironment.- M. Yamamoto and Jun-ichiro Inoue, Signaling Networks Involved in the Malignant Transformation of Breast Cancer.- PART III: Data Science: R. Morishita, H. Takahashi, and T. Sawasaki, Cell-free Based Protein Array Technology.- Y. Nojima and Y. Takeda, Omics Data Analysis Tools for Biomarker Discovery and the Tutorial.- M. Oyama and H. Kozuka-Hata, Integrative Network Analysis of Cancer Cell Signaling by High-resolution Proteomics.- N. Nakamura and R. Yamada, Distance-matrix-based Extraction of Motility Features from Functionally Heterogeneous Cell Populations.- S. Kawasaki, H. Hayashi, and Y. Tominaga, Data Analytic Study of Genetic Mechanism of Ovarian Carcinoma from Single Cell RNA-seq Data.

Brukervurderinger av Methods of Mathematical Oncology



Finn lignende bøker
Boken Methods of Mathematical Oncology finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.