Norges billigste bøker

Machine Learning in Modeling and Simulation

- Methods and Applications

Om Machine Learning in Modeling and Simulation

Machine learning (ML)  approaches have been extensively and successfully employed in various areas, like in economics, medical predictions,  face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time.  With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of  modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783031366437
  • Bindende:
  • Hardback
  • Sider:
  • 450
  • Utgitt:
  • 4. oktober 2023
  • Dimensjoner:
  • 158x236x28 mm.
  • Vekt:
  • 975 g.
  Gratis frakt
Leveringstid: Ukjent
Utvidet returrett til 31. januar 2025
  •  

    Forventes ikke å være levert før jul

Beskrivelse av Machine Learning in Modeling and Simulation

Machine learning (ML)  approaches have been extensively and successfully employed in various areas, like in economics, medical predictions,  face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time.  With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of  modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Brukervurderinger av Machine Learning in Modeling and Simulation



Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.