Utvidet returrett til 31. januar 2025

Machine Learning Engineering in Action

Om Machine Learning Engineering in Action

Field-tested tips, tricks, and design patterns for building MachineLearning projects that are deployable, maintainable, and secure from concept toproduction. In Machine Learning Engineering inAction, you will learn: Evaluatingdata science problems to find the most effective solution Scopinga machine learning project for usage expectations and budget Processtechniques that minimize wasted effort and speed up production Assessinga project using standardized prototyping work and statistical validation Choosingthe right technologies and tools for your project Makingyour codebase more understandable, maintainable, and testable Automatingyour troubleshooting and logging practices Databricks solutions architect BenWilson lays out an approach to building deployable, maintainable productionmachine learning systems. YouGÇÖll adopt software development standards thatdeliver better code management, and make it easier to test, scale, and evenreuse your machine learning code!

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781617298714
  • Bindende:
  • Paperback
  • Sider:
  • 300
  • Utgitt:
  • 14. april 2022
  • Dimensjoner:
  • 235x187x39 mm.
  • Vekt:
  • 1054 g.
  • BLACK NOVEMBER
  På lager
Leveringstid: 4-7 virkedager
Forventet levering: 5. desember 2024

Beskrivelse av Machine Learning Engineering in Action

Field-tested tips, tricks, and design patterns for building MachineLearning projects that are deployable, maintainable, and secure from concept toproduction.
In Machine Learning Engineering inAction, you will learn: Evaluatingdata science problems to find the most effective solution Scopinga machine learning project for usage expectations and budget Processtechniques that minimize wasted effort and speed up production Assessinga project using standardized prototyping work and statistical validation Choosingthe right technologies and tools for your project Makingyour codebase more understandable, maintainable, and testable Automatingyour troubleshooting and logging practices Databricks solutions architect BenWilson lays out an approach to building deployable, maintainable productionmachine learning systems. YouGÇÖll adopt software development standards thatdeliver better code management, and make it easier to test, scale, and evenreuse your machine learning code!

Brukervurderinger av Machine Learning Engineering in Action



Finn lignende bøker
Boken Machine Learning Engineering in Action finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.