Om Infinite Length Modules
Infinite length modules. Some Examples as Introduction.- Modules with strange decomposition properties.- Failure of the Krull-Schmidt theorem for artinian modules and serial modules.- Artinian modules over a matrix ring.- Some combinatorial principles for solving algebraic problems.- Dimension theory of noetherian rings.- Krull, Gelfand-Kirillov, Filter, Faithful and Schur dimensions.- Cohen-Macaulay modules and approximations.- The generic representation theory of finite fields A survey of basic structures.- On artinian objects in the category of functors between $${{\mathbb{F}}_{2}} $$ -vector spaces.- Unstable modules over the Steenrod algebra, functors, and the cohomology of spaces.- Infinite dimensional modules for finite groups.- Bousfield localization for representation theoretists.- The thick subcategory generated by the trivial module.- Birational classification of moduli spaces.- Tame algebras and degenerations of modules.- On some tame and discrete families of modules.- Purity, algebraic compactness, direct sum decompositions, and representation type.- Topological and geometrical aspects of the Ziegler spectrum.- Finite versus infinite dimensional representations A new definition of tameness.- Invariance of tameness under stable equivalence: Krause's theorem.- The Krull-Gabriel dimension of an algebra Open problems and conjectures.- Homological differences between finite and infinite dimensional representations of algebras
Vis mer