Utvidet returrett til 31. januar 2024

Handbook of Reinforcement Learning and Control

Om Handbook of Reinforcement Learning and Control

This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783030609924
  • Bindende:
  • Paperback
  • Sider:
  • 860
  • Utgitt:
  • 25. juni 2022
  • Utgave:
  • 22001
  • Dimensjoner:
  • 155x46x235 mm.
  • Vekt:
  • 1276 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 30. november 2024

Beskrivelse av Handbook of Reinforcement Learning and Control

This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology.
The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including:
deep learning;
artificial intelligence;
applications of game theory;
mixed modality learning; and
multi-agent reinforcement learning.
Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Brukervurderinger av Handbook of Reinforcement Learning and Control



Finn lignende bøker
Boken Handbook of Reinforcement Learning and Control finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.