Norges billigste bøker

Evolutionary Integral Equations and Applications

av J Pruss
Om Evolutionary Integral Equations and Applications

I Equations of Scalar Type.- 1 Resolvents.- 1.1 Well-posedness and Resolvents.- 1.2 Inhomogeneous Equations.- 1.3 Necessary Conditions for Well-posedness.- 1.4 Perturbed Equations.- 1.5 The Generation Theorem.- 1.6 Integral Resolvents.- 1.7 Comments.- 2 Analytic Resolvents.- 2.1 Definition and First Properties.- 2.2 Generation of Analytic Resolvents.- 2.3 Examples.- 2.4 Spatial Regularity.- 2.5 Perturbed Equations.- 2.6 Maximal Regularity.- 2.7 Comments.- 3 Parabolic Equations.- 3.1 Parabolicity.- 3.2 Regular Kernels.- 3.3 Resolvents for Parabolic Equations.- 3.4 Perturbations.- 3.5 Maximal Regularity.- 3.6 A Representation Formula.- 3.7 Comments.- Appendix: k-monotone Kernels.- 4 Subordination.- 4.1 Bernstein Functions.- 4.2 Completely Positive Kernels.- 4.3 The Subordination Principle.- 4.4 Equations with Completely Positive Kernels.- 4.5 Propagation Functions.- 4.6 Structure of Subordinated Resolvents.- 4.7 Comments.- Appendix: Some Common Bernstein Functions.- 5 Linear Viscoelasticity.- 5.1 Balance of Momentum and Constitutive Laws.- 5.2 Material Functions.- 5.3 Energy Balance and Thermoviscoelasticity.- 5.4 Some One-dimensional Problems.- 5.5 Heat Conduction in Materials with Memory.- 5.6 Synchronous and Incompressible Materials.- 5.7 A Simple Control Problem.- 5.8 Comments.- II Nonscalar Equations.- 6 Hyperbolic Equations of Nonscalar Type.- 6.1 Resolvents of Nonscalar Equations.- 6.2 Well-posedness and Variation of Parameters Formulae.- 6.3 Hyperbolic Perturbation Results.- 6.4 The Generation Theorem.- 6.5 Convergence of Resolvents.- 6.6 Kernels of Positive Type in Hilbert spaces.- 6.7 Hyperbolic Problems of Variational Type.- 6.8 Comments.- 7 Nonscalar Parabolic Equations.- 7.1 Analytic Resolvents.- 7.2 Parabolic Equations.- 7.3 Parabolic Problems of Variational Type.- 7.4 Maximal Regularity of Perturbed Parabolic Problems.- 7.5 Resolvents for Perturbed Parabolic Problems.- 7.6 Uniform Bounds for the Resolvent.- 7.7 Comments.- 8 Parabolic Problems in Lp-Spaces.- 8.1 Operators with Bounded Imaginary Powers.- 8.2 Vector-Valued Multiplier Theorems.- 8.3 Sums of Commuting Linear Operators.- 8.4 Volterra Operators in Lp.- 8.5 Maximal Regularity in Lp.- 8.6 Strong Lp-Stability on the Halfline.- 8.7 Comments.- 9 Viscoelasticity and Electrodynamics with Memory.- 9.1 Viscoelastic Beams.- 9.2 Viscoelastic Plates.- 9.3 Thermoviscoelasticity: Strong Approach.- 9.4 Thermoviscoelasticity: Variational Approach.- 9.5 Electrodynamics with Memory.- 9.6 A Transmission Problem for Media with Memory.- 9.7 Comments.- III Equations on the Line.- 10 Integrability of Resolvents.- 10.1 Stability on the Halfline.- 10.2 Parabolic Equations of Scalar Type.- 10.3 Subordinated Resolvents.- 10.4 Strong Integrability in Hilbert Spaces.- 10.5 Nonscalar Parabolic Problems.- 10.6 Comments.- 11 Limiting Equations.- 11.1 Homogeneous Spaces.- 11.2 Admissibility.- 11.3 A-Kernels for Compact A.- 11.4 Almost Periodic Solutions.- 11.5 Nonresonant Problems.- 11.6 Asymptotic Equivalence.- 11.7 Comments.- 12 Admissibility of Function Spaces.- 12.1 Perturbations: Hyperbolic Case.- 12.2 Subordinated Equations.- 12.3 Admissibility in Hilbert Spaces.- 12.4 A-kernels for Parabolic Problems.- 12.5 Maximal Regularity on the Line.- 12.6 Perturbations: Parabolic Case.- 12.7 Comments.- 13 Further Applications and Complements.- 13.1 Viscoelastic Timoshenko Beams.- 13.2 Heat Conduction in Materials with Memory.- 13.3 Electrodynamics with Memory.- 13.4 Ergodic Theory.- 13.5 Semilinear Equations.- 13.6 Semigroup Approaches.- 13.7 Nonlinear Equations with Accretive Operators.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783764328764
  • Bindende:
  • Hardback
  • Sider:
  • 400
  • Utgitt:
  • 1. september 1993
  • Dimensjoner:
  • 170x244x22 mm.
  • Vekt:
  • 835 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 12. mars 2026

Beskrivelse av Evolutionary Integral Equations and Applications

I Equations of Scalar Type.- 1 Resolvents.- 1.1 Well-posedness and Resolvents.- 1.2 Inhomogeneous Equations.- 1.3 Necessary Conditions for Well-posedness.- 1.4 Perturbed Equations.- 1.5 The Generation Theorem.- 1.6 Integral Resolvents.- 1.7 Comments.- 2 Analytic Resolvents.- 2.1 Definition and First Properties.- 2.2 Generation of Analytic Resolvents.- 2.3 Examples.- 2.4 Spatial Regularity.- 2.5 Perturbed Equations.- 2.6 Maximal Regularity.- 2.7 Comments.- 3 Parabolic Equations.- 3.1 Parabolicity.- 3.2 Regular Kernels.- 3.3 Resolvents for Parabolic Equations.- 3.4 Perturbations.- 3.5 Maximal Regularity.- 3.6 A Representation Formula.- 3.7 Comments.- Appendix: k-monotone Kernels.- 4 Subordination.- 4.1 Bernstein Functions.- 4.2 Completely Positive Kernels.- 4.3 The Subordination Principle.- 4.4 Equations with Completely Positive Kernels.- 4.5 Propagation Functions.- 4.6 Structure of Subordinated Resolvents.- 4.7 Comments.- Appendix: Some Common Bernstein Functions.- 5 Linear Viscoelasticity.- 5.1 Balance of Momentum and Constitutive Laws.- 5.2 Material Functions.- 5.3 Energy Balance and Thermoviscoelasticity.- 5.4 Some One-dimensional Problems.- 5.5 Heat Conduction in Materials with Memory.- 5.6 Synchronous and Incompressible Materials.- 5.7 A Simple Control Problem.- 5.8 Comments.- II Nonscalar Equations.- 6 Hyperbolic Equations of Nonscalar Type.- 6.1 Resolvents of Nonscalar Equations.- 6.2 Well-posedness and Variation of Parameters Formulae.- 6.3 Hyperbolic Perturbation Results.- 6.4 The Generation Theorem.- 6.5 Convergence of Resolvents.- 6.6 Kernels of Positive Type in Hilbert spaces.- 6.7 Hyperbolic Problems of Variational Type.- 6.8 Comments.- 7 Nonscalar Parabolic Equations.- 7.1 Analytic Resolvents.- 7.2 Parabolic Equations.- 7.3 Parabolic Problems of Variational Type.- 7.4 Maximal Regularity of Perturbed Parabolic Problems.- 7.5 Resolvents for Perturbed Parabolic Problems.- 7.6 Uniform Bounds for the Resolvent.- 7.7 Comments.- 8 Parabolic Problems in Lp-Spaces.- 8.1 Operators with Bounded Imaginary Powers.- 8.2 Vector-Valued Multiplier Theorems.- 8.3 Sums of Commuting Linear Operators.- 8.4 Volterra Operators in Lp.- 8.5 Maximal Regularity in Lp.- 8.6 Strong Lp-Stability on the Halfline.- 8.7 Comments.- 9 Viscoelasticity and Electrodynamics with Memory.- 9.1 Viscoelastic Beams.- 9.2 Viscoelastic Plates.- 9.3 Thermoviscoelasticity: Strong Approach.- 9.4 Thermoviscoelasticity: Variational Approach.- 9.5 Electrodynamics with Memory.- 9.6 A Transmission Problem for Media with Memory.- 9.7 Comments.- III Equations on the Line.- 10 Integrability of Resolvents.- 10.1 Stability on the Halfline.- 10.2 Parabolic Equations of Scalar Type.- 10.3 Subordinated Resolvents.- 10.4 Strong Integrability in Hilbert Spaces.- 10.5 Nonscalar Parabolic Problems.- 10.6 Comments.- 11 Limiting Equations.- 11.1 Homogeneous Spaces.- 11.2 Admissibility.- 11.3 A-Kernels for Compact A.- 11.4 Almost Periodic Solutions.- 11.5 Nonresonant Problems.- 11.6 Asymptotic Equivalence.- 11.7 Comments.- 12 Admissibility of Function Spaces.- 12.1 Perturbations: Hyperbolic Case.- 12.2 Subordinated Equations.- 12.3 Admissibility in Hilbert Spaces.- 12.4 A-kernels for Parabolic Problems.- 12.5 Maximal Regularity on the Line.- 12.6 Perturbations: Parabolic Case.- 12.7 Comments.- 13 Further Applications and Complements.- 13.1 Viscoelastic Timoshenko Beams.- 13.2 Heat Conduction in Materials with Memory.- 13.3 Electrodynamics with Memory.- 13.4 Ergodic Theory.- 13.5 Semilinear Equations.- 13.6 Semigroup Approaches.- 13.7 Nonlinear Equations with Accretive Operators.

Brukervurderinger av Evolutionary Integral Equations and Applications



Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.