Om Emerging Technologies in Biophysical Sciences: A World Scientific Reference (in 3 Volumes)
Volume 1: Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing.Volume 2: Infertility has become a significant psychosocial burden affecting the lives of couples who cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad of emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in fertility and reproductive medicine.Volume 3: Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied to disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence (AI) and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in diagnostic technologies.
Vis mer