Utvidet returrett til 31. januar 2025

Disordered Cu Transport Across Brain Barriers Following MN Exposure

Om Disordered Cu Transport Across Brain Barriers Following MN Exposure

Increased Cu levels in blood, saliva and brain are found in Mn-exposed animals and humans; the underlying mechanism is unknown. Dyshomeostasis of Cu in the central nervous system is known to contribute to the pathogeneses of several neurodegenerative diseases. Regulation of cellular Cu homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7b. Both transporters play an important role in removing excess Cu ions from the cytosol. However, the questions as to whether and how Cu-ATPases in the brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid, or blood, and whether and how Mn exposure affects the transport function of both Cu-ATPases, remained unanswered. This study was designed to characterize the role of Cu-ATPases in regulating Cu transport at the blood-brain and blood-cerebrospinal fluid barriers and to investigate how exposure to Mn may alter the function of ATP7A and ATP7B, thereby contributing to the etiology of Mn-induced Parkinsonian disorder.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783659529283
  • Bindende:
  • Paperback
  • Sider:
  • 252
  • Utgitt:
  • 22. april 2014
  • Dimensjoner:
  • 229x152x14 mm.
  • Vekt:
  • 372 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 19. desember 2024

Beskrivelse av Disordered Cu Transport Across Brain Barriers Following MN Exposure

Increased Cu levels in blood, saliva and brain are found in Mn-exposed animals and humans; the underlying mechanism is unknown. Dyshomeostasis of Cu in the central nervous system is known to contribute to the pathogeneses of several neurodegenerative diseases. Regulation of cellular Cu homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7b. Both transporters play an important role in removing excess Cu ions from the cytosol. However, the questions as to whether and how Cu-ATPases in the brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid, or blood, and whether and how Mn exposure affects the transport function of both Cu-ATPases, remained unanswered. This study was designed to characterize the role of Cu-ATPases in regulating Cu transport at the blood-brain and blood-cerebrospinal fluid barriers and to investigate how exposure to Mn may alter the function of ATP7A and ATP7B, thereby contributing to the etiology of Mn-induced Parkinsonian disorder.

Brukervurderinger av Disordered Cu Transport Across Brain Barriers Following MN Exposure



Finn lignende bøker
Boken Disordered Cu Transport Across Brain Barriers Following MN Exposure finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.