Utvidet returrett til 31. januar 2024

Automated Deep Learning

- Neural Architecture Search Is Not the End

Om Automated Deep Learning

Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. Automated deep learning (AutoDL) endeavors to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS). In this monograph, the authors examine research efforts into automation across the entirety of an archetypal DL workflow. In so doing, they propose a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas, namely novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Aimed at students and researchers, this monograph provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781638283188
  • Bindende:
  • Paperback
  • Utgitt:
  • 27. februar 2024
  • Dimensjoner:
  • 156x234x9 mm.
  • Vekt:
  • 245 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 5. desember 2024

Beskrivelse av Automated Deep Learning

Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. Automated deep learning (AutoDL) endeavors to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS). In this monograph, the authors examine research efforts into automation across the entirety of an archetypal DL workflow. In so doing, they propose a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas, namely novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Aimed at students and researchers, this monograph provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

Brukervurderinger av Automated Deep Learning



Finn lignende bøker
Boken Automated Deep Learning finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.