Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the Universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes onto describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly on indirectly.
The Nuclear Nonproliferation Treaty (NPT) has been the principal legal barrier to prevent the spread of nuclear weapons for the past forty-five years. It promotes the peaceful uses of nuclear technology and insures, through the application of safeguards inspections conducted by the International Atomic Energy Agency (IAEA), that those technologies are not being diverted toward the production of nuclear weapons. It is also the only multinational treaty that obligates the five nuclear weapons states that are party to the treaty (China, France, Great Britain, Russia, and the United States) to pursue nuclear disarmament measures. Though there have been many challenges over the years, most would agree that the treaty has largely been successful. However, many are concerned about the continued viability of the NPT. The perceived slow pace of nuclear disarmament, the interest by some countries to consider a weapons program while party to the treaty, and the funding and staffing issues at the IAEA, are all putting considerable strain on the treaty. This manuscript explores those issues and offers some possible solutions to ensure that the NPT will survive effectively for many years to come.
Glia, the non-neuronal cells in the nervous systems, are both passive and active participants in diverse arrays of neuronal function. The diversity of glial cells in various animal species appears to be correlated with the complexity of brains. In the animal Drosophila melanogaster, glia are similarly categorized to their mammalian counterparts in morphology and function. Surface glia cover the outermost surface of the brain and function as a blood-brain-barrier to protect the nervous system. Cortex glia, similar to mammalian astrocytes, enwrap around the neuronal cell bodies and provide trophic support. Neuropil glia, similar to mammalian astrocytes and oligodendrocytes, are closely associated with the synapse-enriched neuropils and regulate synapse formation, synaptic function, and underlie the mechanism of circuit and behavior. This short monograph focuses on Drosophila glia, discusses the classification of different glial subtypes and their developmental origins, and provides an overview of different glial-mediated activity crucial for the development and function of the nervous system. This context serves as a general introduction to the molecular and cellular basis of glial function in normal and pathological brains.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.