Utvidet returrett til 31. januar 2025

Bøker av William Fulton

Filter
Filter
Sorter etterSorter Populære
  • - A First Course
    av William Fulton
    639,-

    The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e.

  • - A First Course
    av William Fulton
    1 141,-

    The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e.

  • av Serge Lang & William Fulton
    1 386,-

  • av William Fulton
    1 681,-

    Intersection theory has played a central role in mathematics, from the ancient origins of algebraic geometry in the solutions of polynomial equations to the triumphs of algebraic geometry during the last two centuries. This book develops the foundations of the theory and indicates the range of classical and modern applications.

  • av William Fulton
    999,-

    Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.