Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This work covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. It establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The book presents multi-dimensional techniques for periodization, describes weighted lattice point and ball numbers in georelevant "potato-like" regions, and discusses radial and angular non-uniform lattice point distribution.
Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.
This work covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. It establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The book presents multi-dimensional techniques for periodization, describes weighted lattice point and ball numbers in georelevant "potato-like" regions, and discusses radial and angular non-uniform lattice point distribution.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.