Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Beg-Int user level
Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training.The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. What You Will LearnPerform basic data analysis and construct models in scikit-learn and PySparkTrain, test, and validate your models (hyperparameter tuning)Know what MLOps is and what an ideal MLOps setup looks likeEasily integrate MLFlow into your existing or future projectsDeploy your models and perform predictions with them on the cloudWho This Book Is ForData scientists and machine learning engineers who want to learn MLOps and know how to operationalize their models
Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more.
Apache Hadoop is the most popular platform for big data processing to build powerful analytics solutions. This book shows you how to do just that, with the help of practical examples. You will be well-versed with the analytical capabilities of Hadoop ecosystem with Apache Spark and Apache Flink to perform big data analytics by the end of this book.
Over the last few years, Scala has been adopted increasingly, especially in the field of data science and analytics, along with Apache Spark, which is built on Scala and is widely used in the field of analytics. With this book, you'll learn how to leverage the power of both Scala and Spark to make sense of big data.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.