Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
In this book, the authors highlight the latest research findings on the security and privacy of federated learning systems. The main attacks and counterattacks in this booming field are presented to readers in connection with inference, poisoning, generative adversarial networks, differential privacy, secure multi-party computation, homomorphic encryption, and shuffle, respectively. The book offers an essential overview for researchers who are new to the field, while also equipping them to explore this ¿uncharted territory.¿ For each topic, the authors first present the key concepts, followed by the most important issues and solutions, with appropriate references for further reading. The book is self-contained, and all chapters can be read independently. It offers a valuable resource for master¿s students, upper undergraduates, Ph.D. students, and practicing engineers alike.
This book constitutes the refereed post-conference proceedings of the 17th EAI International Conference on Tools for Design, Implementation and Verification of Emerging Information Technologies, TridentCom 2022, which was held in Melbourne, Australia, in November 23-25,2022. The 11 full papers were selected from 30 submissions and deal the emerging technologies of big data, cyber-physical systems and computer communications. The papers are grouped in thematical sessions on network security; network communication; network services; mobile and ad hoc networks; blockchain; machine learning.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.