Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Fractional Difference, Differential Equations, and Inclusions: Analysis and Stability is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for several classes of functional fractional difference equations and inclusions. Covered equations include delay effects of finite, infinite, or state-dependent nature, and tools used to establish the existence results for the proposed problems include fixed point theorems, densifiability techniques, monotone iterative technique, notions of Ulam stability, attractivity and the measure of non-compactness, as well as the measure of weak noncompactness. The tools of fractional calculus are found to be of great utility in improving the mathematical modeling of many natural phenomena and processes occurring in the areas of engineering, social, natural, and biomedical sciences. All abstract results in the book are illustrated by examples in applied mathematics, engineering, biomedical, and other applied sciences.
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical remarks and all abstract results are illustrated by examples. The tools used include many classical and modern nonlinear analysis methods such as fixed-point theorems, as well as some notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and all other applied sciences.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.