Utvidet returrett til 31. januar 2025

Bøker av Richard Evan Schwartz

Filter
Filter
Sorter etterSorter Populære
  • - (AMS-198)
    av Richard Evan Schwartz
    889 - 2 174,-

  • av Richard Evan Schwartz
    1 547,-

  • av Richard Evan Schwartz
    562,-

    In Really Big Numbers, mathematician and author, Richard Evan Schwartz, leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. You Can Count on Monsters is a unique teaching tool that takes maths lovers on a journey designed to motivate kids to learn the fun of factoring and prime numbers.

  • - The First 100 Numbers and Their Characters
    av Richard Evan Schwartz
    358,-

  • av Richard Evan Schwartz
    1 546,-

  • av Richard Evan Schwartz
    934,-

    Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.

  • av Richard Evan Schwartz
    822,-

    This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.