Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Drawing on recent "event history" analytical methods from biostatistics, engineering and sociology, this book explains how longitudinal data can be used to study the causes of deaths, crimes, wars, and many other human-related events.
This book demonstrates how to estimate and interpret fixed-effects models in a variety of different modeling contexts.
Sooner or later anyone who does statistical analysis runs into problems with missing data in which information for some variables is missing for some cases. Why is this a problem? Because most statistical methods presume that every case has information on all the variables to be included in the analysis. Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has been relying on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data.
Multiple regression is at the heart of social science data analysis, because it deals with explanations and correlations. This book is a complete introduction to this statistical method.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.