Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This textbook is designed for the UG/PG students of mathematics for all universities over the world. It is primarily based on the classroom lectures, the authors gave at the University of Delhi. This book is used both for self-study and course text. Full details of all proofs are included along with innumerous solved problems, interspersed throughout the text and at places where they naturally arise, to understand abstract notions. The proofs are precise and complete, backed up by chapter end problems, with just the right level of difficulty, without compromising the rigor of the subject. The book starts with definition and examples of Rings and logically follows to cover Properties of Rings, Subrings, Fields, Characteristic of a Ring, Ideals, Integral Domains, Factor Rings, Prime Ideals, Maximal Ideals and Primary Ideals, Ring Homomorphisms and Isomorphisms, Polynomial Rings, Factorization of Polynomials, and Divisibility in Integral Domains.
This textbook focuses on the basics and complex themes of group theory taught to senior undergraduate mathematics students across universities. The contents focus on the properties of groups, subgroups, cyclic groups, permutation groups, cosets and Lagrange¿s theorem, normal subgroups and factor groups, group homomorphisms and isomorphisms, automorphisms, direct products, group actions and Sylow theorems. Pedagogical elements such as end of chapter exercises and solved problems are included to help understand abstract notions. Intermediate lemmas are also carefully designed so that they not only serve the theorems but are also valuable independently. The book is a useful reference to undergraduate and graduate students besides academics.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.