Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered. ContentsPart I Geometric issues in PDE problems related to the infinity Laplace operator Solution of free boundary problems in the presence of geometric uncertainties Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies High-order topological expansions for Helmholtz problems in 2D On a new phase field model for the approximation of interfacial energies of multiphase systems Optimization of eigenvalues and eigenmodes by using the adjoint method Discrete varifolds and surface approximation Part II Weak Monge-Ampere solutions of the semi-discrete optimal transportation problem Optimal transportation theory with repulsive costs Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations On the Lagrangian branched transport model and the equivalence with its Eulerian formulation On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows Pressureless Euler equations with maximal density constraint: a time-splitting scheme Convergence of a fully discrete variational scheme for a thin-film equatio Interpretation of finite volume discretization schemes for the Fokker-Planck equation as gradient flows for the discrete Wasserstein distance
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents:Part ISecond-order decomposition model for image processing: numerical experimentationOptimizing spatial and tonal data for PDE-based inpaintingImage registration using phasea amplitude separationRotation invariance in exemplar-based image inpaintingConvective regularization for optical flowA variational method for quantitative photoacoustic tomography with piecewise constant coefficientsOn optical flow models for variational motion estimationBilevel approaches for learning of variational imaging modelsPart IINon-degenerate forms of the generalized Eulera Lagrange condition for state-constrained optimal control problemsThe Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controlsControllability of Keplerian motion with low-thrust control systemsHigher variational equation techniques for the integrability of homogeneous potentialsIntroduction to KAM theory with a view to celestial mechanicsInvariants of contact sub-pseudo-Riemannian structures and Einsteina Weyl geometryTime-optimal control for a perturbed Brockett integratorTwist maps and Arnold diffusion for diffeomorphismsA Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part IIndex
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.