Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book presents a systematic, self-contained treatment of a new, more precise classification of Lipschitz mappings and its application in many topics of metric fixed point theory. The mean Lipschitz condition introduced by Goebel, Japón Pineda, and Sims is relatively easy to check and turns out to satisfy several principles: regulating the possible growth of the sequence of Lipschitz constants k(Tn), ensuring good estimates for k0(T) and k¿(T), and providing some new results in metric fixed point theory.
This book presents a systematic, self-contained treatment of a new, more precise classification of Lipschitz mappings and its application in many topics of metric fixed point theory. The mean Lipschitz condition introduced by Goebel, Japón Pineda, and Sims is relatively easy to check and turns out to satisfy several principles: regulating the possible growth of the sequence of Lipschitz constants k(Tn), ensuring good estimates for k0(T) and k¿(T), and providing some new results in metric fixed point theory.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.