Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book provides a comprehensive overview of the numerical simulation of fluid-structure interaction (FSI) for application in marine engineering. Fluid-Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid-structure interaction for designing and optimizing the ships of the future.
Numerical simulation is a technique of major importance in various technical and scientific fields. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the second of two volumes and gives examples of the uses of numerical simulation in various scientific and technical fields: agriculture, industry, Earth and universe sciences, meteorology and climate studies, energy, biomechanics and human and social sciences.
Numerical simulation is a technique of major importance in various technical and scientific fields. Used to understand diverse physical phenomena or to design everyday objects, it plays a major role in innovation in the industrial sector. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the first of two volumes and focuses on the principles, methods and industrial practice of numerical modeling.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.