Utvidet returrett til 31. januar 2025

Bøker av Ginsburg

Filter
Filter
Sorter etterSorter Populære
  • - Infectious and Inflammatory Disease
    av Ginsburg & Willard
    1 051,-

    Genomic and Precision Medicine: Infectious and Inflammatory Disease, Third Edition, provides current clinical solutions on the application of genome discovery on a broad spectrum of disease categories in IMD - including asthma, obesity and multiple sclerosis. Each chapter is organized to cover the application of genomics and personalized medicine tools and technologies, along with information on a) Risk Assessment and Susceptibility, b) Diagnosis and Prognosis, c) Pharmacogenomics and Precision Therapeutics, and d) Emerging and Future Opportunities in the field.

  • - Students and Instructors on Pedagogy Behind the Wall
    av Ginsburg
    543 - 1 881,-

  • av RUTISHAUSER, ENGELI, Ginsburg & m.fl.
    872,-

    I: The Self-Adjoint Boundary Value Problem.- 1. Problems of Dirichlet¿s and Poisson¿s type.- 2. Better approximations.- 3. Energy on the boundary.- 4. Eigenvalue problems.- 5. Biharmonic problems.- 6. Adaption for practical purposes; the test example.- 7. Modes of oscillation of the plate.- II: Theory of Gradient Methods.- 1. Introduction.- 2. The residual polynomial.- 3. Methods with two-term recursive formulae.- 4. Methods with three-term recursive formulae.- 5. Combined methods.- 6. The cgT-method.- 7. Determination of eigenvalues.- III: Experiments on Gradient Methods.- 1. Introduction.- 2. Survey of the plate experiments.- 3. Solution of the system A x + b = 0 (Plate problem with coarse grid).- 3.1 Steepest descent.- 3.2 Tchebycheff method.- 3.3 Conjugate gradient methods.- 3.4 The cgT-method.- 3.5 Combined method.- 3.6 Elimination.- 3.7 Computation of the residuals.- 4. Determination of the eigenvalues of A.- 4.1 Conjugate gradient methods with subsequent QD-algorithm.- 4.2 cgT-method with subsequent QD-algorithm (spectral transformation).- 5. Solution of the system A x + b =0 and determination of the eigenvalues of A; fine grid.- 6. Second test example: the bar problem.- 7. Appendix: The first three eigenvectors of A.- IV: Overrelaxation.- 1. Theory.- 1.1 Principles.- 1.2 General relaxation.- 1.3 Overrelaxation.- 1.4 ¿Property A¿.- 1.5 Young¿s overrelaxation.- 1.6 Different methods.- 2. Numerical results (Plate problem).- 2.1 Overrelaxation.- 2.2 Symmetric relaxation.- 2.3 Block relaxation.- 3. The bar problem.- 3.1 Overrelaxation.- 3.2. Block relaxation.- 3.3 Symmetric overrelaxation.- V: Conclusions.- 1. The plate problem.- 2. The bar problem.- 3. Computation of eigenvalues.- 4. Recollection of the facts.- References.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.