Utvidet returrett til 31. januar 2025

Bøker av Eduardo Garcia-Rio

Filter
Filter
Sorter etterSorter Populære
  • av Eduardo Garcia-Rio
    504,-

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kahler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kahler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kahler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.

  • av Eduardo Garcia-Rio, Miguel Brozos-Vázquez, Peter Gilkey, m.fl.
    475,-

    This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.