Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This practical guide to biosimulation provides the hands-on experience needed to devise, design and analyze simulations of biophysical processes for applications in biological and biomedical sciences. Through real-world case studies and worked examples, students will develop and apply basic operations through to advanced concepts, covering a wide range of biophysical topics including chemical kinetics and thermodynamics, transport phenomena, and cellular electrophysiology. Each chapter is built around case studies in a given application area, with simulations of real biological systems developed to analyze and interpret data. Open-ended project-based exercises are provided at the end of each chapter, and with all data and computer codes available online (www.cambridge.org/biosim) students can quickly and easily run, manipulate, explore and expand on the examples inside. This hands-on guide is ideal for use on senior undergraduate/graduate courses and also as a self-study guide for anyone who needs to develop computational models of biological systems.
Chemical Biophysics provides an engineering-based approach to biochemical system analysis for graduate-level courses on systems biology, computational bioengineering and molecular biophysics. It is the first textbook to apply rigorous physical chemistry principles to mathematical and computational modeling of biochemical systems for an interdisciplinary audience. The book is structured to show the student the basic biophysical concepts before applying this theory to computational modeling and analysis, building up to advanced topics and research. Topics explored include the kinetics of nonequilibrium open biological systems, enzyme mediated reactions, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems. End-of-chapter exercises range from confidence-building calculations to computational simulation projects.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.