Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
In commemoration of the bicentennial of the birth of the "e;lady who gave the rose diagram to us"e;, this special contributed book pays a statistical tribute to Florence Nightingale. This book presents recent phenomenal developments, both in rigorous theory as well as in emerging methods, for applications in directional statistics, in 25 chapters with contributions from 65 renowned researchers from 25 countries. With the advent of modern techniques in statistical paradigms and statistical machine learning, directional statistics has become an indispensable tool. Ranging from data on circles to that on the spheres, tori and cylinders, this book includes solutions to problems on exploratory data analysis, probability distributions on manifolds, maximum entropy, directional regression analysis, spatio-directional time series, optimal inference, simulation, statistical machine learning with big data, and more, with their innovative applications to emerging real-life problems in astro-statistics, bioinformatics, crystallography, optimal transport, statistical process control, and so on.
This book was written to serve as a graduate-level textbook for special topics classes in mathematics, statistics, and economics, to introduce these topics to other researchers, and for use in short courses. It is an introduction to the theory of majorization and related notions, and contains detailed material on economic applications of majorization and the Lorenz order, investigating the theoretical aspects of these two interrelated orderings. Revising and expanding on an earlier monograph, Majorization and the Lorenz Order: A Brief Introduction, the authors provide a straightforward development and explanation of majorization concepts, addressing historical development of the topics, and providing up-to-date coverage of families of Lorenz curves. The exposition of multivariate Lorenz orderings sets it apart from existing treatments of these topics.Mathematicians, theoretical statisticians, economists, and other social scientists who already recognize the utility of the Lorenz order in income inequality contexts and arenas will find the book useful for its sound development of relevant concepts rigorously linked to both the majorization literature and the even more extensive body of research on economic applications. Barry C. Arnold, PhD, is Distinguished Professor in the Statistics Department at the University of California, Riverside. He is a Fellow of the American Statistical Society, the American Association for the Advancement of Science, and the Institute of Mathematical Statistics, and is an elected member of the International Statistical Institute. He is the author of more than two hundred publications and eight books.José María Sarabia, PhD, is Professor of Statistics and Quantitative Methods in Business and Economics in the Department of Economics at the University of Cantabria, Spain. He is author of more than one hundred and fifty publications and ten books and is an associate editor of several journals including TEST, Communications in Statistics, and Journal of Statistical Distributions and Applications.
The theory of inequalities has applications in virtually every branch of mathematics. This revised and expanded edition of a classic work on inequalities will be of interest to statisticians, probabilists, and mathematicians.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.