Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Defect-Induced Magnetism in Oxide Semiconductors provides an overview of the latest advances in defect engineering to create new magnetic materials and enable new technological applications. First, the book introduces the mechanisms, behavior, and theory of magnetism in oxide semiconductors and reviews the methods of inducing magnetism in these materials. Then, strategies such as pulsed laser deposition and RF sputtering to grow oxide nanostructured materials with induced magnetism are discussed. This is followed by a review of the most relevant postdeposition methods to induce magnetism in oxide semiconductors including annealing, ion irradiation, and ion implantation. Examples of defect-induced magnetism in oxide semiconductors are provided along with selected applications. This book is a suitable reference for academic researchers and practitioners and for people engaged in research and development in the disciplines of materials science and engineering.
Metal Chalcogenide Biosensors: Fundamentals and Applications provides an overview of advances in materials development of chalcogenides for use in biosensing and sensing applications. The metal chalcogenides discussed include highly reactive metals, noble metals and transition metals. Particular attention is given to the morphology, porosity, structure and fabrication of materials for biosensing applications. The connection between the chalcogenides¿ physical and chemical properties and device performance is explored. Key parameters for biosensor devices are investigated such as thermodynamics, kinetics, selectivity, sensitivity, efficiency and durability to aid in materials selection. Finally, a range of biosensor devices are addressed including gas biosensors, chemical biosensors, environment biosensors and biological molecule sensors. This book is suitable for those in the fields of materials science and engineering, chemistry and physics.
Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, magnetic materials, and more.This book is appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies, including materials scientists and engineers, analytical chemists and other related disciplines.
Specialty Optical Fibers: Materials, Fabrication Technology, and Applications reviews theoretical and experimental photonic research relevant to the synthesis, processing, characterization, modeling, physical features, and applications of Specialty Optical Fibers (SOFs) with significant technological impact potential. All fiber-based advanced photonics device components rely on specialty optical fibers, which have either a unique waveguide structure or a novel material composition. High power optical amplifiers, high power fiber, and novel fabrication techniques for optical fiber design have enabled significant technological advances. The book provides discussion on these applications, including current research directions, future opportunities, and remaining challenges. It is suitable for researchers in academia and practitioners in R&D working in materials science, electrical engineering, and fiber optics.
Zero-Dimensional Carbon Nanomaterials: Material Design Methods, Properties and Applications covers advances in carbon dots, graphene quantum dots, carbon quantum dots, fullerenes and their applications. This book explores important aspects of preparing these materials for specific applications and includes an overview of the most relevant synthesis methods, with special emphasis on newer green methods and material synthesis from biomass sources. Thorough discussion of the materials key properties, including unique optical and electronic properties to enable them for a wide range of applications is included, along with applications in the fields of photovoltaic cells, catalysis, sensors, biomedical, nano devices and energy storage. This book is suitable for researchers and practitioners in materials science and engineering and may also be helpful for chemists and chemical engineers.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.