Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Provides simple explanations of the important concepts in population and community ecology. Provides R code throughout, to illustrate model development and analysis, as well as appendix introducing the R language. Interweaves ecological content and code so that either stands alone.
This book is designed as a gentle introduction to the fascinating field of choice modeling and its practical implementation using the R language. Discrete choice analysis is a family of methods useful to study individual decision-making. With strong theoretical foundations in consumer behavior, discrete choice models are used in the analysis of health policy, transportation systems, marketing, economics, public policy, political science, urban planning, and criminology, to mention just a few fields of application. The book does not assume prior knowledge of discrete choice analysis or R, but instead strives to introduce both in an intuitive way, starting from simple concepts and progressing to more sophisticated ideas. Loaded with a wealth of examples and code, the book covers the fundamentals of data and analysis in a progressive way. Readers begin with simple data operations and the underlying theory of choice analysis and conclude by working with sophisticated models including latent class logit models, mixed logit models, and ordinal logit models with taste heterogeneity. Data visualization is emphasized to explore both the input data as well as the results of models. This book should be of interest to graduate students, faculty, and researchers conducting empirical work using individual level choice data who are approaching the field of discrete choice analysis for the first time. In addition, it should interest more advanced modelers wishing to learn about the potential of R for discrete choice analysis. By embedding the treatment of choice modeling within the R ecosystem, readers benefit from learning about the larger R family of packages for data exploration, analysis, and visualization.
The 2nd edition of R for Marketing Research and Analytics continues to be the best place to learn R for marketing research. This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis.Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.The 2nd edition increases the book's utility for students and instructors with the inclusion of exercises and classroom slides. At the same time, it retains all of the features that make it a vital resource for practitioners: non-mathematical exposition, examples modeled on real world marketing problems, intuitive guidance on research methods, and immediately applicable code.
This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others).
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Levy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes.
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps.
This book is written for behavioral scientists who want to consider adding R to their existing set of statistical tools, or want to switch to R as their main computation tool.
The focus on doing data mining rather than just reading about data mining is refreshing.The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment.
Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data.
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set.
R is a language and environment for data analysis and graphics. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN);
In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results.
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data.
This volume provides user-friendly software and a GUI package to assist with microarray data analysis in early drug development. Each methodological issue is illustrated using real-world examples of early drug development dose-response microarray experiments.
Business Analytics for Managers helps readers extract knowledge and actionable insight from real business data. The text emphasizes data-driven thinking and provides a quick-start guide to one of the most powerful software solutions available.
Today, information technology plays a pivotal role in financial control and audit: most financial data is now digitally recorded and dispersed among servers, clouds and networks over which the audited firm has no control.
This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R.
Presenting a practitioner's guide to capabilities and best practices of quality control systems using the R programming language, this volume emphasizes accessibility and ease-of-use through detailed explanations of R code as well as standard statistical methodologies.
This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis.Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis.With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.
Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
The science of sound, or acoustics, studies all types of sounds and therefore covers a wide range of scientific disciplines, from pure to applied acoustics.
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes.
The material in this book is organized to flow from descriptive statistical methods to topics centered on modeling and inference with networks, with the latter separated into two sub-areas, corresponding first to the modeling and inference of networks themselves, and then, to processes on networks.
This book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding.In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manualΓÇö"integrating" R, ggplot2, and ShinyΓÇöintroduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone.Learn ggplot2 Using Shiny App allows users toMake publication-ready plots in minutes without codingDownload plots with desired width, height, and resolutionPlot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics
Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle.
This new edition to the classic book by ggplot2 creator Hadley Wickham highlights compatibility with knitr and RStudio. ggplot2 is a data visualization package for R that helps users create data graphics, including those that are multi-layered, with ease. With ggplot2, it's easy to: produce handsome, publication-quality plots with automatic legends created from the plot specificationsuperimpose multiple layers (points, lines, maps, tiles, box plots) from different data sources with automatically adjusted common scalesadd customizable smoothers that use powerful modeling capabilities of R, such as loess, linear models, generalized additive models, and robust regressionsave any ggplot2 plot (or part thereof) for later modification or reusecreate custom themes that capture in-house or journal style requirements and that can easily be applied to multiple plotsapproach a graph from a visual perspective, thinking about how eachcomponent of the data is represented on the final plot This book will be useful to everyone who has struggled with displaying data in an informative and attractive way. Some basic knowledge of R is necessary (e.g., importing data into R). ggplot2 is a mini-language specifically tailored for producing graphics, and you'll learn everything you need in the book. After reading this book you'll be able to produce graphics customized precisely for your problems, and you'll find it easy to get graphics out of your head and on to the screen or page.
This book provides a narrative of how R can be useful in the analysis of public administration, public policy, and political science data specifically, in addition to the social sciences more broadly.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.