Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
"e;Can one hear the shape of a drum?"e; This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students.Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon-Webb-Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada-Berard-Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon-Webb-Wolpert domains from Buser surfaces and establishes their isospectrality.Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
This book gives an introduction to discrete-time Markov chains which evolve on a separable metric space. The focus is on the ergodic properties of such chains, i.e., on their long-term statistical behaviour. Among the main topics are existence and uniqueness of invariant probability measures, irreducibility, recurrence, regularizing properties for Markov kernels, and convergence to equilibrium. These concepts are investigated with tools such as Lyapunov functions, petite and small sets, Doeblin and accessible points, coupling, as well as key notions from classical ergodic theory. The theory is illustrated through several recurring classes of examples, e.g., random contractions, randomly switched vector fields, and stochastic differential equations, the latter providing a bridge to continuous-time Markov processes. The book can serve as the core for a semester- or year-long graduate course in probability theory with an emphasis on Markov chains or random dynamics. Some of the material is also well suited for an ergodic theory course. Readers should have taken an introductory course on probability theory, based on measure theory. While there is a chapter devoted to chains on a countable state space, a certain familiarity with Markov chains on a finite state space is also recommended.
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to thoseproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this bookshould be accessible to either undergraduate or graduatestudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.
This textbook provides a first introduction to category theory, a powerful framework and tool for understanding mathematical structures. Designed for students with no previous knowledge of the subject, this book offers a gentle approach to mastering its fundamental principles.Unlike traditional category theory books, which can often be overwhelming for beginners, this book has been carefully crafted to offer a clear and concise introduction to the subject. It covers all the essential topics, including categories, functors, natural transformations, duality, equivalence, (co)limits, and adjunctions. Abundant fully-worked examples guide readers in understanding the core concepts, while complete proofs and instructive exercises reinforce comprehension and promote self-study. The author also provides background material and references, making the book suitable for those with a basic understanding of groups, rings, modules, topological spaces, and set theory.Based on the author's course at the Vrije Universiteit Brussel, the book is perfectly suited for classroom use in a first introductory course in category theory. Its clear and concise style, coupled with its detailed coverage of key concepts, makes it equally suited for self-study.
This book provides an introduction to the broad topic of the calculus of variations. It addresses the most natural questions on variational problems and the mathematical complexities they present.Beginning with the scientific modeling that motivates the subject, the book then tackles mathematical questions such as the existence and uniqueness of solutions, their characterization in terms of partial differential equations, and their regularity. It includes both classical and recent results on one-dimensional variational problems, as well as the adaptation to the multi-dimensional case. Here, convexity plays an important role in establishing semi-continuity results and connections with techniques from optimization, and convex duality is even used to produce regularity results. This is then followed by the more classical Hölder regularity theory for elliptic PDEs and some geometric variational problems on sets, including the isoperimetric inequality andthe Steiner tree problem. The book concludes with a chapter on the limits of sequences of variational problems, expressed in terms of ¿-convergence.While primarily designed for master's-level and advanced courses, this textbook, based on its author's instructional experience, also offers original insights that may be of interest to PhD students and researchers. A foundational understanding of measure theory and functional analysis is required, but all the essential concepts are reiterated throughout the book using special memo-boxes.
This text covers a first course in bilinear maps and tensor products intending to bring the reader from the beginning of functional analysis to the frontiers of exploration with tensor products. Tensor products, particularly in infinite-dimensional normed spaces, are heavily based on bilinear maps. The author brings these topics together by using bilinear maps as an auxiliary, yet fundamental, tool for accomplishing a consistent, useful, and straightforward theory of tensor products. The author¿s usual clear, friendly, and meticulously prepared exposition presents the material in ways that are designed to make grasping concepts easier and simpler. The approach to the subject is uniquely presented from an operator theoretic view. An introductory course in functional analysis is assumed. In order to keep the prerequisites as modest as possible, there are two introductory chapters, one on linear spaces (Chapter 1) and another on normed spaces (Chapter 5), summarizing the background material required for a thorough understanding. The reader who has worked through this text will be well prepared to approach more advanced texts and additional literature on the subject.The book brings the theory of tensor products on Banach spaces to the edges of Grothendieck's theory, and changes the target towards tensor products of bounded linear operators. Both Hilbert-space and Banach-space operator theory are considered and compared from the point of view of tensor products. This is done from the first principles of functional analysis up to current research topics, with complete and detailed proofs. The first four chapters deal with the algebraic theory of linear spaces, providing various representations of the algebraic tensor product defined in an axiomatic way. Chapters 5 and 6 give the necessary background concerning normed spaces and bounded bilinear mappings. Chapter 7 is devoted to the study of reasonable crossnorms on tensor product spaces, discussing in detail the important extreme realizations of injective and projective tensor products. In Chapter 8 uniform crossnorms are introduced in which the tensor products of operators are bounded; special attention is paid to the finitely generated situation. The concluding Chapter 9 is devoted to the study of the Hilbert space setting and the spectral properties of the tensor products of operators. Each chapter ends with a section containing ¿Additional Propositions" and suggested readings for further studies.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.