Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This is a book of problems in probability and their solutions. The work has been written for undergraduate students who have a background in calculus and wish to study probability. Probability theory is a key part of contemporary mathematics. The subject plays a key role in the insurance industry, modelling financial markets, and statistics in general including all those fields of endeavour to which statistics is applied (e.g. health, physical sciences, engineering, economics, social sciences). Every student majoring in mathematics at university ought to take a course on probability or mathematical statistics. Probability is now a standard part of high school mathematics, and teachers ought to be well versed and confident in the subject. Problem solving is important in mathematics. This book combines problem solving and probability.
Presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. This book deals with inequalities in information theory and the Csiszar's f-Divergence between probability measures.
Intends to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals.
Presents the theory of ordinary differential equations, with illustrative examples and interesting exercises. This book is suitable for undergraduate students who major in mathematics and have acquired a prerequisite knowledge of calculus and partly the knowledge of a complex variable, and are now reading advanced calculus and linear algebra.
A monograph that presents univariate and multivariate classical analyses of advanced inequalities. It examines the advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and Hardy-Opial type inequalities.
Provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. This book describes its generators and the link with stochastic differential equations in infinite dimensions.
This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and Gauss-Weierstrass types. Then, it continues in a very detailed and extensive chapter on approximation by interpolating operators induced by neural networks, a connection to computer science. This book ends with the approximation theory and functional analysis on time scales, a very modern topic, detailing all the pros and cons of this method.The results in this book are expected to find applications in many areas of pure and applied mathematics. So far, very little is written about fractional approximation theory which is at its infancy. As such, it is suitable for researchers, graduate students, and performing seminars as well as an invaluable resource for all science libraries.
An introductory course to the theory of distributions, as well as its applications in the resolution of partial differential equations (PDEs). It begins with a chapter on the fundamental spaces (or test function spaces), and concludes with a chapter on Sobolev spaces, which are known to be very important in the resolution of PDEs.
This book investigates several classes of partial differential equations of real time variable and complex spatial variables, including the heat, Laplace, wave, telegraph, Burgers, Black Merton Scholes, Schr dinger and Korteweg de Vries equations. The complexification of the spatial variable is done by two different methods. The first method is that of complexifying the spatial variable in the corresponding semigroups of operators. In this case, the solutions are studied within the context of the theory of semigroups of linear operators. It is also interesting to observe that these solutions preserve some geometric properties of the boundary function, like the univalence, starlikeness, convexity and spirallikeness. The second method is that of complexifying the spatial variable directly in the corresponding evolution equation from the real case. More precisely, the real spatial variable is replaced by a complex spatial variable in the corresponding evolution equation and then analytic and non-analytic solutions are sought. For the first time in the book literature, we aim to give a comprehensive study of the most important evolution equations of real time variable and complex spatial variables. In some cases, potential physical interpretations are presented. The generality of the methods used allows the study of evolution equations of spatial variables in general domains of the complex plane.
This volume is on initial boundary value problems for parabolic partial differential equations of second order.
"The material, forming a perfect integral whole, offers information that puts the reader at the forefront of current research and determines fruitful directions for future advanced study. Clarity of the text and rigorous proofs represent other features of this monograph. The monograph is addressed to researchers and graduate students specializing in pure and applied mathematics who are interested in a modern approach to discrete approximation theory."Mathematical Reviews Clippings In this monograph, we present the authors' recent work of the last seven years in Approximation Theory. Chapters are self-contained and can be read independently and advanced courses can be taught out of this book. Here our generalized discrete singular operators are of the following types: Picard, Gauss-Weierstrass and Poisson-Cauchy operators. We treat both the unitary and non-unitary, univariate and multivariate cases of these operators, which are not necessarily positive operators. The book's results are expected to find applications in many areas of pure and applied mathematics, and statistics. As such, it is suitable for researchers, graduate students, and seminars of related subjects, and serves well as an invaluable resource for all science libraries.
This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Grüss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Grüss and Ostrowski type inequalities involving s-convexity of functions; and also examines the general case when several functions are involved. Then, it presents the general fractional Hermite-Hadamard type inequalities using m-convexity and (s, m)-convexity. Finally, it introduces the reduction method in fractional calculus and its connection to fractional Ostrowski type inequalities is studied.This book's results are expected to find applications in many areas of pure and applied mathematics, especially in difference equations and fractional differential equations. The chapters are self-contained and can be read independently, and advanced courses can be taught out of it. It is suitable for researchers, graduate students, seminars of the above subjects, and serves well as an invaluable resource for all science libraries.
This unique book provides a self-contained conceptual and technical introduction to the theory of differential sheaves.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.