Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28.
This book contains selected papers based on talks given at the "Representation Theory, Number Theory, and Invariant Theory" conference held at Yale University from June 1 to June 5, 2015.
This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups.
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut.
The framework of 'symmetry' provides an important route between the abstract theory and experimental observations. From the reviews:"[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
Parmi les sujets traites figurent l'etude des faisceaux coherents et de leur cohomologie, le theoreme de platification par eclatements admissibles qui generalise au cadre formel-rigide un theoreme de Raynaud-Gruson dans le cadre algebrique, et le theoreme de comparaison du type GAGA pour les faisceaux coherents.
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting from this connection allows the construction of examples with a variety of specified dynamical properties, and by combining algebraic and dynamical tools one obtains a quite detailed understanding of this class of Zd-actions.
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue.Stabiliser la formule des traces tordue est la méthode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adéliques d'un groupe réductif, tordue par un automorphisme, sur les formes automorphes de carré intégrable de ce groupe. Cette compréhension se fait en réduisant le problème, suivant les idées de Langlands, à des groupes plus petits munis d'un certain nombre de données auxiliaires; c'est ce que l'on appelle les données endoscopiques. L'analogue non tordu a été résolu par J. Arthur et dans ce livre on suit la stratégie de celui-ci.Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la théorie de l'endoscopie tordue développée par R. Kottwitz et D. Shelstad et par J.-P. Labesse. Ils donnent tous les arguments des démonstrations même si nombre d'entre eux se trouvent déjà dansles travaux d'Arthur concernant le cas de la formule des traces non tordue.Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnée des formes automorphes de carré intégrable pour les groupes classiques quasi-déployés, c¿était pour les auteurs une des principales motivations pour l¿écrire.Cette première partie comprend les chapitres préparatoires (I-V).
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration.
Brauer had already introduced the defect of a block and opened the way towards a classification by solving all the problems in defects zero and one, and by providing some evidence for the finiteness of the set of blocks with a given defect.
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties.
This lecture notes volume presents significant contributions from the "Algebraic Geometry and Number Theory" Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology.
This book presents the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint.
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory.
The Gelfand-Serganova theorem, which allows for the geometric interpretation of matroids as convex polytopes with certain symmetry properties, is presented, and in the final chapter, matroid representations and combinatorial flag varieties are discussed.
This volume uses a unified approach to representation theory and automorphic forms.
Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas. This title contains articles which explore various aspects of the parallel worlds of function fields and number fields, ranging from Arakelov geometry to Drinfeld modules, and t-motives.
- Acta Scientiarum MathematicarumAvramov lecture: "... - Zentralblatt MATHValla lecture: "... since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory."
Contains a significant amount of new in areas of interest, and presents the "big picture" in an engaging framework.
Part I deals with the Hille--Yosida and Lumer--Phillips characterizations of semigroup generators, the Trotter--Kato approximation theorem, Kato's unified treatment of the exponential formula and the Trotter product formula, the Hille--Phillips perturbation theorem, and Stone's representation of unitary semigroups.
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincare and Liapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Henon-Heiles system, etc.The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simo, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed.
Rational Homotopy Theory and Differential Forms
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.