Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book covers modeling, control and stability aspects of hybrid AC/DC power networks. More specifically, this book provides an in-depth analysis of the stability and control aspects of hybrid AC/DC power grids, with comprehensive coverage of theoretical aspects of conventional stability issues (e.g., small-signal stability, voltage stability and frequency stability), emerging stability issues (e.g., converter associated stability) and control strategies applied in this emerging hybrid AC/DC power grids. This book takes a more pragmatic approach with a unique compilation of timely topics related to hybrid AC/DC networks compared with other books in this field. Therefore, this book provides the reader with comprehensive information on modeling, control and stability aspects which need to consider when modeling and analysis of hybrid AC/DC power grids for power system dynamics and stability studies. Each chapter provides fundamental stability theories, some worked examples and case studies to explain various modeling, analysis and control concepts introduced in the chapter. Therefore, postgraduate research students, power system researchers and power system engineers benefit from the materials presented in this book and assist them to model and device new control strategies to overcome the stability challenges of the emerging hybrid AC/DC power grid.
This book presents the latest research on switching control, adaptive switching control, and their applications in the transient stability control and analysis of large-scale complex power systems. In large-scale complex power systems, renewable power generators, flexible power electronics converters, and distributed controllers are widely employed. Due to the poor overcurrent tolerance capability of power electronics converters and lacking of coordination mechanism, stability control in events, such as natural disasters, cascaded faults, and severe disturbances, is viewed as the key challenge in the operation of these systems. High-performance self-coordinated controllers are needed for the control of important power sources and power electronics converters. Adaptive switching controllers are a group of controllers designed by the authors for the control of various renewable power generators, synchronous generators, and modular multilevel converters. These controllers operate in a self-coordinated manner and aim to employ the largest transient control energy of converters and power sources. Imbalance between power generation and consumption is largely filled by the application of these controllers, and transient stability of power systems can be significantly improved. This book covers both the preliminary knowledge and key proofs in the design and stability analysis of adaptive switching control systems, and considerable simulation and experimental results are presented to illustrate the application and performance of the controllers. This book is used as a reference book for researchers and engineers in fields of electrical engineering and control engineering.
Energy Systems Transition: Digitalization, Decarbonization, Decentralization, and Democratization provides a thorough multidisciplinary overview of the operation of modern green energy systems and examines the role of 4D energy transition in global decarbonization mitigation efforts for meeting long-term climate goals. Contributions present practical aspects and approaches with evidence from applications to real-world energy systems, offering in-depth technical discussions, case studies, and examples to help readers understand the methods, current challenges, and future directions. A hands-on reference to energy distribution systems, it is suitable for researchers and industry practitioners from different branches of engineering, energy, data science, economics, and operation research.
AI-Powered IoT in the Energy Industry: Digital Technology and Sustainable Energy Systems looks at opportunities to employ cutting-edge applications of artificial intelligence (AI), the Internet of Things (IoT), and Machine Learning (ML) in designing and modeling energy and renewable energy systems. The book's main objectives are to demonstrate how big data can help with energy efficiency and demand reduction, increase the usage of renewable energy sources, and assist in transitioning from a centralized system to a distributed, efficient, and embedded energy system. Contributions cover the fundamentals of the renewable energy sector, including solar, wind, biomass, and hydrogen, as well as building services and power generation systems. Chapters also examine renewable energy property prediction methods and discuss AI and IoT prediction models for biomass thermal properties.¿Covers renewable energy sector fundamentals;Explains the application of big data in distributed energy domains;Discusses AI and IoT prediction methods and models.
The lack of effective DC fault protection technology remains a major barrier for the DC paradigm shift. In addressing the key challenges, Direct Current Fault Protection: Basic Concepts and Technology Advances starts with an introduction to the advantages of DC power systems before moving on to an in-depth review of DC fault protection technologies, including mechanical circuit breaker (MCB), solid-state circuit breaker (SSCB), hybrid circuit breaker (HCB), converter based (breakerless) protection, and fault current limiter (FCL). Coverage includes a comprehensive comparison of various DC fault interruption technologies and their suitable applications, state-of-the-art DC fault protection concepts and advances in research, identification of fundamental challenges and future directions in the field, and commercialization aspects. This book will be a valuable reference for practicing engineers, researchers, and graduate students in the field of power electronics andDC power systems.
The surge in renewable and distributed energy sources has posed significant challenges for smart power distribution network (SPDN). These challenges fall into two main categories: the unpredictability of renewable energy sources and the complexities introduced by numerous electrical devices and their interdependencies, affecting forecasting and operational performance. As the emphasis on SPDN's economic and environmental aspects grows, this book focuses on the vital themes of sustainability and cost-efficiency in SPDN forecasting, planning, and operation. It is structured into three key parts:1. SPDN Situation Awareness: This section assesses prior research methods, analyzes their shortcomings while dissecting SPDN's unique situation awareness characteristics. Then, some forecast and virtual collection methods are presented. 2. Boosting SPDN Planning: Addressing optimal planning challenges in SPDN, this part introduces advanced modelling and algorithm solvingtechniques, tailored to mitigate SPDN's inherent uncertainty.3. Enhancing SPDN Operation: Considering a variety of equipment types and controllable loads, this section explores strategies to boost SPDN operational performance. It covers control methodologies for electric vehicles, flexible loads, energy storage, and related equipments, etc.Tailored for university researchers, engineers, and graduate students in electrical engineering and computer science, this book is a valuable resource for comprehending SPDN's situation awareness, planning, and operation intricacies in the context of sustainability and economic efficiency.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.