Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
A broadly accessible introduction to robotics that spans the most basic concepts and the most novel applications; for students, teachers, and hobbyists.The Robotics Primer offers a broadly accessible introduction to robotics for students at pre-university and university levels, robot hobbyists, and anyone interested in this burgeoning field. The text takes the reader from the most basic concepts (including perception and movement) to the most novel and sophisticated applications and topics (humanoids, shape-shifting robots, space robotics), with an emphasis on what it takes to create autonomous intelligent robot behavior. The core concepts of robotics are carried through from fundamental definitions to more complex explanations, all presented in an engaging, conversational style that will appeal to readers of different backgrounds. The Robotics Primer covers such topics as the definition of robotics, the history of robotics ("Where do Robots Come From?”), robot components, locomotion, manipulation, sensors, control, control architectures, representation, behavior ("Making Your Robot Behave”), navigation, group robotics, learning, and the future of robotics (and its ethical implications). To encourage further engagement, experimentation, and course and lesson design, The Robotics Primer is accompanied by a free robot programming exercise workbook that implements many of the ideas on the book on iRobot platforms.The Robotics Primer is unique as a principled, pedagogical treatment of the topic that is accessible to a broad audience; the only prerequisites are curiosity and attention. It can be used effectively in an educational setting or more informally for self-instruction. The Robotics Primer is a springboard for readers of all backgrounds—including students taking robotics as an elective outside the major, graduate students preparing to specialize in robotics, and K-12 teachers who bring robotics into their classrooms.
A comprehensive introduction to the mathematical foundations of movement and actuation that apply equally to animals and machines.This textbook offers a computational framework for the sensorimotor stage of development as applied to robotics. Much work in developmental robotics is based on ad hoc examples, without a full computational basis. This book's comprehensive and complete treatment fills the gap, drawing on the principal mechanisms of development in the first year of life to introduce what is essentially an operating system for developing robots. The goal is to apply principles of development to robot systems that not only achieve new levels of performance but also provide evidence for scientific theories of human development.
"This textbook describes approaches and design principles for developing intelligent autonomous systems grounded in biology and neurosciences"--
A blueprint for the design of sociable robots, as well as the story of Kismet, a nascent example.
"This textbook offers an overview of techniques stemming from machine learning to train robots to adapt to changes in their environment"--
The first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches.
A comprehensive overview of an interdisciplinary approach to robotics that takes direct inspiration from the developmental and learning phenomena observed in children's cognitive development.Developmental robotics is a collaborative and interdisciplinary approach to robotics that is directly inspired by the developmental principles and mechanisms observed in children's cognitive development. It builds on the idea that the robot, using a set of intrinsic developmental principles regulating the real-time interaction of its body, brain, and environment, can autonomously acquire an increasingly complex set of sensorimotor and mental capabilities. This volume, drawing on insights from psychology, computer science, linguistics, neuroscience, and robotics, offers the first comprehensive overview of a rapidly growing field.After providing some essential background information on robotics and developmental psychology, the book looks in detail at how developmental robotics models and experiments have attempted to realize a range of behavioral and cognitive capabilities. The examples in these chapters were chosen because of their direct correspondence with specific issues in child psychology research; each chapter begins with a concise and accessible overview of relevant empirical and theoretical findings in developmental psychology. The chapters cover intrinsic motivation and curiosity; motor development, examining both manipulation and locomotion; perceptual development, including face recognition and perception of space; social learning, emphasizing such phenomena as joint attention and cooperation; language, from phonetic babbling to syntactic processing; and abstract knowledge, including models of number learning and reasoning strategies. Boxed text offers technical and methodological details for both psychology and robotics experiments.
A comprehensive survey of artificial intelligence algorithms and programming organization for robot systems, combining theoretical rigor and practical applications.This textbook offers a comprehensive survey of artificial intelligence (AI) algorithms and programming organization for robot systems. Readers who master the topics covered will be able to design and evaluate an artificially intelligent robot for applications involving sensing, acting, planning, and learning. A background in AI is not required; the book introduces key AI topics from all AI subdisciplines throughout the book and explains how they contribute to autonomous capabilities. This second edition is a major expansion and reorganization of the first edition, reflecting the dramatic advances made in AI over the past fifteen years. An introductory overview provides a framework for thinking about AI for robotics, distinguishing between the fundamentally different design paradigms of automation and autonomy. The book then discusses the reactive functionality of sensing and acting in AI robotics; introduces the deliberative functions most often associated with intelligence and the capability of autonomous initiative; surveys multi-robot systems and (in a new chapter) human-robot interaction; and offers a "metaview” of how to design and evaluate autonomous systems and the ethical considerations in doing so. New material covers locomotion, simultaneous localization and mapping, human-robot interaction, machine learning, and ethics. Each chapter includes exercises, and many chapters provide case studies. Endnotes point to additional reading, highlight advanced topics, and offer robot trivia.
The new edition of an introduction to multiagent systems that captures the state of the art in both theory and practice, suitable as textbook or reference.Multiagent systems are made up of multiple interacting intelligent agents—computational entities to some degree autonomous and able to cooperate, compete, communicate, act flexibly, and exercise control over their behavior within the frame of their objectives. They are the enabling technology for a wide range of advanced applications relying on distributed and parallel processing of data, information, and knowledge relevant in domains ranging from industrial manufacturing to e-commerce to health care. This book offers a state-of-the-art introduction to multiagent systems, covering the field in both breadth and depth, and treating both theory and practice. It is suitable for classroom use or independent study.This second edition has been completely revised, capturing the tremendous developments in multiagent systems since the first edition appeared in 1999. Sixteen of the book's seventeen chapters were written for this edition; all chapters are by leaders in the field, with each author contributing to the broad base of knowledge and experience on which the book rests.The book covers basic concepts of computational agency from the perspective of both individual agents and agent organizations; communication among agents; coordination among agents; distributed cognition; development and engineering of multiagent systems; and background knowledge in logics and game theory. Each chapter includes references, many illustrations and examples, and exercises of varying degrees of difficulty. The chapters and the overall book are designed to be self-contained and understandable without additional material. Supplemental resources are available on the book's Web site.ContributorsRafael Bordini, Felix Brandt, Amit Chopra, Vincent Conitzer, Virginia Dignum, Jürgen Dix, Ed Durfee, Edith Elkind, Ulle Endriss, Alessandro Farinelli, Shaheen Fatima, Michael Fisher, Nicholas R. Jennings, Kevin Leyton-Brown, Evangelos Markakis, Lin Padgham, Julian Padget, Iyad Rahwan, Talal Rahwan, Alex Rogers, Jordi Sabater-Mir, Yoav Shoham, Munindar P. Singh, Kagan Tumer, Karl Tuyls, Wiebe van der Hoek, Laurent Vercouter, Meritxell Vinyals, Michael Winikoff, Michael Wooldridge, Shlomo Zilberstein
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.