Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. This book intends to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. It begins with a review of stochastic differential equations on Euclidean space.
Presents an introduction to functional analysis and the initial fundamentals of $C^*$- and von Neumann algebra theory in a form suitable for both intermediate graduate courses and self-study. The authors provide an account of the introductory portions of this important and technically difficult subject.
Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. This book presents an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. It is suitable for a year-long graduate course.
Presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic $0$ and positive characteristic are emphasized.
Treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. This book covers a wide range of topics of modern coordinate-free differential geometry.
A guide to the qualitative theory of foliations. It features topics including: analysis on foliated spaces, characteristic classes of foliations and foliated manifolds. It is suitable as a supplementary text for a topics course at the advanced graduate level.
Provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises.
Provides an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The book is suitable for a graduate course in quiver representations and has numerous exercises and examples throughout.
Many laws of physics are formulated in terms of differential equations. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view.
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauss curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.