Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This exploration of the global structure of spacetime within the context of general relativity examines the causal and singular structures of spacetime, revealing some of the curious possibilities that are compatible with the theory, such as `time travel' and `holes' of various types.
More than 100 years after quantum mechanics was introduced, the interpretation of the theory remains controversial. This Element introduces some of the most puzzling questions at the foundations of quantum mechanics and surveys the most prominent ways in which physicists and philosophers of physics have attempted to resolve them.
This is an introductory Element that is meant to provide a conceptual introduction to foundational issues in computation in physical systems. The will be a compelling read for those interested in computer science, physics, mathematics, cognitive science, and philosophy.
This Element introduces major issues in the epistemology of experimental physics through discussion of canonical physics experiments and some that have not yet received much philosophical attention.
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach.
This Element provides an entry point for philosophical engagement with quantization and the classical limit. It introduces the mathematical tools of C*-algebras as they are used to compare classical and quantum physics. It then employs those tools to investigate philosophical issues surrounding theory change in physics. It discusses examples in which quantization bears on the topics of reduction, structural continuity, analogical reasoning, and theory construction. In doing so, it demonstrates that the precise mathematical tools of algebraic quantum theory can aid philosophers of science and philosophers of physics.
This Element offers an opinionated and selective introduction to philosophical issues concerning idealizations in physics, including the concept of and reasons for introducing idealization, abstraction, and approximation, possible taxonomy and justification, and application to issues of mathematical Platonism, scientific realism, and scientific understanding.
This Element offers an overview of some of the most important debates in philosophy and physics around the topics of emergence and reduction and proposes a compatibilist view of emergence and reduction. In particular, it suggests that specific notions of emergence, which the author calls 'few-many emergence' and 'coarse-grained emergence', are compatible with 'intertheoretic reduction'. Some further issues that will be addressed concern the comparison between parts-whole emergence and few-many emergence, the emergence of effective (-field) theories, the use of infinite limits, the notion of intertheoretic reduction and the explanation of universal and cooperative behavior. Although the focus will be principally on classical phase transitions and other examples from condensed matter physics, the main aim is to draw some general conclusions on the topics of emergence and reduction that can help us understand a variety of case-studies ranging from high-energy physics to astrophysics.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.