Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book comprehensively summarizes the recent achievements and trends in encapsulation of micro- and nanocontainers for applications in smart materials. It covers the fundamentals of processing and techniques for encapsulation with emphasis on preparation, properties, application, and future prospects of encapsulation process for smart applications in pharmaceuticals, textiles, biomedical, food packaging, composites, friction/wear, phase change materials, and coatings. Academics, researchers, scientists, engineers, and students in the field of smart materials will benefit from this book.
This book provides an overview on the latest technology and applications of bio-based fiber composite materials. It covers the mechanical and thermal properties of bio-fibers for polymeric resins and explains the different pre-treatment methods used by the researchers for the enhancement. In addition, this book also presents a complete analysis on the tribological behavior of bio-fiber reinforced polymer composites to appreciate the friction and wear behavior. This book would be a handy to the industrial practitioners and researchers in the direction of achieving optimum design for the components made of natural fiber based polymer matrix composites.
This book gives a comprehensive overview of bionanocomposites, a class of materials that consist of a biopolymer matrix which is embedded with nanoparticles and natural fibres as reinforcement to produce novel material and achieve superior physico-chemical and mechanical properties. The book looks into the synthesis of various forms of nanoparticles, the fabrication methods, and the characterization of bionanocomposites. It also includes topics related to the sustainability and life prediction of bionanocomposites such as biodegradability, recycling, and re-use. An important aspect in the designing of bionanocomposites includes computational modeling, and the suitability of the bionanocomposites in various applications is presented. This book appeals to students, researchers, and scientists looking to gain fundamental knowledge, know about recent advancements in the research on bionanocomposites and their applications.
This book presents the latest studies in the synthesis and application of boron nitride (BN) composites as multifunctional materials for advanced technologies. BN, the second hardest material after diamond, has different allotropic forms similar to carbon and can exist as nanosheets, nanotubes, nanoshells, and 3D permeable nanostructure. The different chapters in this book highlight the BN nanostructures and its composite materials synthesized with conducting polymer, epoxy, nylon, graphene, and natural fiber composite, to produce materials with enhanced properties such as excellent mechanical wear resistance, superior thermal conductivity, and unique electronic properties. This book caters to researchers and academics interested in BN-based composite and its potential applications in nanoscale electrical and thermal devices and metal-free electro- and photo-catalysts.
This book provides an overview of the fundamentals and recent advances in the field of carbon composite catalysts, including graphene, carbon nanotubes, mesoporous carbons, graphitic carbon nitrides, and related composites. Special focus is placed on their controllable preparation and applications in the gas phase, liquid phase, electrochemical, and photocatalytic reactions, as well as defect and surface chemistry-related catalytic activities of carbon materials. Some perspectives are highlighted on the development of more efficient carbonaceous catalysts featuring high stability, low cost, optimized structures, and enhanced performance, which are the key factors to accelerate the designed preparation and commercialization of carbon composite catalysts. The book will also present the latest studies of carbon-based composite catalysts for clean energy change and storage, nature protection, and essential industrial production and storage and include the key challenges and future opportunities in this exciting field.
This book is written to introduce the application of high-performance composite materials such as fiber reinforced polymers, functionally graded composites, and sustainable fiber reinforced composites for development of thin-walled plated structures, beams, girders, and deck structures subjected to different kinds of loads. This book also includes test cases and its validation with finite element method using general purpose commercial computer software. Moreover, the book also deals with design methodology of advanced composite materials based on different applications. The comprehensive overview of the state-of-the-art research on the high-performance composite structures dealing with their stability, response, and failure characteristics will be of significant interest to scientists, researchers, students, and engineers working in the thrust area of advanced composite structures. This book is also helpful for Ph.D. candidates for developing their fundamental understanding on high-performance composite structures, and it will also appropriate for master- and undergraduate-level courses on design of composite structures especially for Civil Engineering Infrastructures.
This book comprehensively reviews the key topics in the area of nanocomposites and hybrid materials used for waste water treatment and purification. It covers materials chemistry, various synthesis approaches and properties of these nanomaterials for the different water purification techniques. It provides new direction to the readers to better understand the chemistry behind these materials and the methods to improve their properties. This book will be a very valuable reference source for graduates and postgraduates, engineers, research scholars (primarily in the field of material science, water, nanoscience and nanotechnology), material scientists, researchers in the water-related area, scientists working in water treatment plans and pollution mitigation industries.
This book covers topics related to structural composite materials such as processing, characterization, applications and challenges. The book presents ways of processing composites, where different types of composites can be processed depending on the type of reinforcement and matrix. It also outlines the evaluation of mechanical properties of a few processed composites and discusses the potential applications of composites and machining challenges faced in processing polymer and ceramic composites. The book caters to material scientists, industrial practitioners, researchers and students working on structural composite materials.
This book provides a general overview of the importance of fibre-matrix interfacial bonding characteristics in natural fibre-based composites to obtain optimal material properties for a specific application. Composites materials are prepared by combining fibres and polymers to achieve superior materials properties than those of the individual components. Composite materials are used to produce lightweight components with increased stiffness and strength; their properties can also be tailored for any specific applications. The glass fibre reinforced composites dominate 95% of the thermoplastic and thermoset-based composites. However, the natural fibre reinforced composites can give competition to the glass fibres due to their advantages such as biodegradability, low density, low cost, and good mechanical properties. This book looks into biocomposites and its important aspect of optimization of materials¿ performance by fine-tuning the fibre-matrix bonding characteristics. The chapters in the book look at different plant fibres such as kenaf, pineapple leaf, jute, date palm, luffa, cotton, hemp, wood, bamboo, flax, and straw and the different approaches to enhance the fibre-matrix interfacial bonding through physical and/or chemical treatment methods. It demonstrates that the nature of fibre-matrix bonding has a significant effect on the properties such as tensile, flexural, impact, inter-laminar shear strength, moisture absorption, thickness swelling, thermal, chemical, damping, creep, and fatigue. Its content appeals to academics, students, researcher, and scientist who are working in the field to produce biodegradable and recyclable materials in the composite industry.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.