Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
A new era in the representation theory of finite groups began with the McKay conjecture. This book presents the conjecture in a clear and accessible way, with only minimal pre-requisites. Many fascinating aspects of character theory are explored along the way, with some new and elegant proofs.
This comprehensive introduction to sub-Riemannian geometry proceeds from classical topics to cutting-edge theory and applications. The only prerequisites are calculus, linear algebra and differential equations. It can be used for graduate courses in Riemannian or sub-Riemannian geometry, or as a reference for researchers in several disciplines.
This comprehensive introduction to stable homotopy theory presents the foundations of this often daunting subject together in one place for the first time. Writing with beginning graduate students in mind, the authors begin with the motivating phenomena before discussing the general theory and moving on to current research and applications.
The character theory of reductive groups over finite fields is a rich, complex and vast field, incorporating tools and methods from many mathematical areas. This book provides a contemporary treatment of the theory and is a useful reference for graduate students and researchers with a basic understanding of algebraic geometry.
Part two of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of integral analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
This book introduces singularly perturbed methods in a self-contained manner by investigating two relatively simple but typical non-compact elliptic problems. Avoiding using too many sophisticated estimates, this book is written for PhD students and junior mathematicians who plan to do their research in the area of elliptic differential equations.
Probabilistic number theory studies the many surprising interactions between whole numbers and the theory of random processes. This incisive textbook for beginning graduate students is the first to present and explain some of the most modern developments in the field, focusing on key examples and probabilistic ideas in the arguments.
From two leading experts, this is the first book on the Bellman function method and its applications to many topics in probability and harmonic analysis, and a reference for graduate students and researchers. Beginning with basic concepts, the examples increase in sophistication, culminating with Calderon-Zygmund operators and end-point estimates.
In addition to being an interesting and profound subject in its own right, commutative ring theory is important as a foundation for algebraic geometry and complex analytical geometry. Matsumura covers the basic material, including dimension theory, depth, Cohen-Macaulay rings, Gorenstein rings, Krull rings and valuation rings. More advanced topics such as Ratliff's theorems on chains of prime ideals are also explored. The work is essentially self-contained, the only prerequisite being a sound knowledge of modern algebra, yet the reader is taken to the frontiers of the subject. Exercises are provided at the end of each section and solutions or hints to some of them are given at the end of the book.
The language of -categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. This book develops a new, more accessible model-independent approach to the foundations of -category theory by studying the universe, or -cosmos, in which -categories live.
This book introduces the homological methods used in modern representation theory and discusses several landmark results that illustrate their power and beauty. With detailed exposition of many topics unavailable in one volume until now, it is an invaluable resource for advanced graduate students and researchers in representation theory.
There has been a tremendous growth in understanding of random tilings over the past 25 years. This book, the first dedicated to the topic, caters to both beginning graduate students (or advanced undergraduates) wanting to learn the basics and to mature researchers looking to widen their background knowledge.
This book is the first self-contained exposition of the link between dynamical systems and dimension groups. Recommended for graduate students as well as established researchers, it contains a thorough introduction to the field, including full proofs of the major results, as well a wealth of examples, exercises and open problems.
This is the first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory. Suitable for graduate students, it goes from basic material on vertex-transitive graphs and permutation group theory right up to the field's major open problems, and includes many examples and exercises illustrating the theory.
Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates requiring only a basic knowledge of group theory and general algebra.
This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and stochastic analysis. It focuses on 'dimension' as a basic counter of degrees of freedom, leading to precise relations between combinatorial measurements and various indices originating from the classical inequalities of Khintchin, Littlewood and Grothendieck. The basic concepts of fractional Cartesian products and combinatorial dimension are introduced and linked to scales calibrated by harmonic-analytic and stochastic measurements. Topics include the (two-dimensional) Grothendieck inequality and its extensions to higher dimensions, stochastic models of Brownian motion, degrees of randomness and Frechet measures in stochastic analysis. This book is primarily aimed at graduate students specialising in harmonic analysis, functional analysis or probability theory. It contains many exercises and is suitable to be used as a textbook. It is also of interest to scientists from other disciplines, including computer scientists, physicists, statisticians, biologists and economists.
In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The first half of the book deals with classification of the finite dimensional simple Lie algebras and of their finite dimensional irreducible representations. The second half introduces the theory of Kac-Moody algebras, concentrating particularly on those of affine type. A brief account of Borcherds algebras is also included. An Appendix gives a summary of the basic properties of each Lie algebra of finite and affine type.
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference.
Thanks to the driving forces of the Ito calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.
This graduate textbook offers a self-contained introduction to the concepts and techniques of logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry and number theory. It features a systematic exposition of the foundations of the field, from the basic results on convex geometry and commutative monoids to the theory of logarithmic schemes and their de Rham and Betti cohomology. The book will be of use to graduate students and researchers working in algebraic, analytic, and arithmetic geometry as well as related fields.
This is a self-contained, modern treatment of the algebraic theory of machines. Dr Holcombe examines various applications of the idea of a machine in biology, biochemistry and computer science and gives also a rigorous treatment of the way in which these machines can be decomposed and simulated by simpler ones. This treatment is based on fundamental ideas from modern algebra. Motivation for many of the newer results is provided by way of applications so this account should be accessible and valuable for those studying applied algebra or theoretical computer science at advanced undergraduate or beginning postgraduate level, as well as for those undertaking research in those areas.
The study of dynamical systems forms a vast and rapidly developing field even when one considers only activity whose methods derive mainly from measure theory and functional analysis. Karl Petersen has written a book which presents the fundamentals of the ergodic theory of point transformations and then several advanced topics which are currently undergoing intense research. By selecting one or more of these topics to focus on, the reader can quickly approach the specialized literature and indeed the frontier of the area of interest. Each of the four basic aspects of ergodic theory - examples, convergence theorems, recurrence properties, and entropy - receives first a basic and then a more advanced, particularized treatment. At the introductory level, the book provides clear and complete discussions of the standard examples, the mean and pointwise ergodic theorems, recurrence, ergodicity, weak mixing, strong mixing, and the fundamentals of entropy. Among the advanced topics are a thorough treatment of maximal functions and their usefulness in ergodic theory, analysis, and probability, an introduction to almost-periodic functions and topological dynamics, a proof of the Jewett-Krieger Theorem, an introduction to multiple recurrence and the Szemeredi-Furstenberg Theorem, and the Keane-Smorodinsky proof of Ornstein's Isomorphism Theorem for Bernoulli shifts. The author's easily-readable style combined with the profusion of exercises and references, summaries, historical remarks, and heuristic discussions make this book useful either as a text for graduate students or self-study, or as a reference work for the initiated.
This text organizes a range of results in chromatic homotopy theory, running a single thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results, taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other fields: the daughter subject 'elliptic cohomology' abuts mathematical physics, manifold geometry, topological analysis, and the representation theory of loop groups. The common language employed when discussing these subjects showcases their unity and guides the reader breezily from one domain to the next, ultimately culminating in the construction of Witten's genus for String manifolds. This text is an expansion of a set of lecture notes for a topics course delivered at Harvard University during the spring term of 2016.
Introducing foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, this text is based on Bastiani calculus. It focuses on two main areas of infinite-dimensional geometry: infinite-dimensional Lie groups and weak Riemannian geometry, exploring their connections to manifolds of (smooth) mappings. Topics covered include diffeomorphism groups, loop groups and Riemannian metrics for shape analysis. Numerous examples highlight both surprising connections between finite- and infinite-dimensional geometry, and challenges occurring solely in infinite dimensions. The geometric techniques developed are then showcased in modern applications of geometry such as geometric hydrodynamics, higher geometry in the guise of Lie groupoids, and rough path theory. With plentiful exercises, some with solutions, and worked examples, this will be indispensable for graduate students and researchers working at the intersection of functional analysis, non-linear differential equations and differential geometry. This title is also available as Open Access on Cambridge Core.
"This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderâon problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruction and range characterization results. Highlights include a proof of boundary rigidity for simple surfaces as well as scattering rigidity for connections. The concluding section discusses current open problems and related topics. The numerous exercises and examples make this book an excellent self-study resource or text for a onesemester course or seminar"--
Eigenvalues of Laplace and Schroedinger operators play a fundamental role in many applications in mathematics and physics. This graduate-level book is devoted to their qualitative and quantitative mathematical analysis. It assumes no prior knowledge in this area and leads up to cutting-edge research on sharp constants in Lieb-Thirring inequalities.
"This is the first volume of a two-volume book that offers an in-depth, and essentially self-contained, treatment of the arithmetic theory of algebraic groups. It is accessible to graduate students and researchers in number theory, algebraic geometry, and related areas"--
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.