Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications collates key background information on efficient cultivation and biorefinery of seaweeds, combining underlying chemistry and methodology with industry experience. Beginning with a review of the opportunities for seaweed biorefinery and the varied components and properties of macroalgae, the book then reviews all the key steps needed for industrial applications, from its cultivation, collection and processing, to extraction techniques, concentration and purification. A range of important applications are then discussed, including the production of energy and novel materials from seaweed, before a set of illustrative case studies shows how these various stages work in practice. Drawing on the expert knowledge of a global team of editors and authors, this book is a practical resource for both researchers and businesses who currently work with macroalgae. Highlights the specific challenges and benefits of developing seaweed for sustainable products Presents useful case studies that demonstrate varied approaches and methodologies in practiceCovers the complete seaweed chain, from cultivation to waste management
Green Chemistry in Practice: Greener Material and Chemical Innovation through Collaboration collects together a unique set of case studies based on researchers' experiences in developing practical, green chemistry-driven solutions to industry problems as part of the Greener Solutions Program at Berkeley Center for Green Chemistry.Beginning with an introduction to green chemistry, the book goes on to provide an overview of the interdisciplinary approach taken by the Center, which aims to bring about a generational transformation toward the design and use of inherently safer chemicals and materials through research, teaching and outreach. This is followed by four detailed case studies revealing each step of the process involved in assessing and designing greener solutions to real-world problems in the fields of preservatives, textiles, additive manufacturing, and green energy.Drawing together the hands-on, practical experience of an interdisciplinary team from across academia and industry, Practice in Green Chemistry provides a unique insight into the practicalities of applying green chemistry principles in support of a global push toward a more sustainable world.
Extensive experimentation and high failure rates are a well-recognised downside to the drug discovery process, with the resultant high levels of inefficiency and waste producing a negative environmental impact. Sustainable and Green Approaches in Medicinal Chemistry reveals how medicinal and green chemistry can work together to directly address this issue. After providing essential context to the growth of green chemistry in relation to drug discovery in Part 1, the book goes on to identify a broad range of practical methods and synthesis techniques in Part 2. Part 3 reveals how medicinal chemistry techniques can be used to improve efficiency, mitigate failure and increase the environmental benignity of the entire drug discovery process, whilst Parts 4 and 5 discuss natural products and microwave-induced chemistry. Finally, the role of computers in drug discovery is explored in Part 6. Identifies novel and cost effective green medicinal chemistry approaches for improved efficiency and sustainabilityReflects on techniques for a broad range of compounds and materialsHighlights sustainable and green chemistry pathways for molecular synthesis
Nontraditional Activation Methods in Green and Sustainable Applications: Microwaves; Ultrasounds; Photo-, Electro- and Mechan-ochemistry and High Hydrostatic Pressure provides a broad overview of non-traditional activation methods to help readers identify and use appropriate approaches in reducing the environmental impact of their work. Sections discuss the fundamental principles of each method and provide examples of their practical use, illustrating their usefulness. Given the importance of expanding laboratory based technologies to the industrial level, chapters that cover both existing and potential industrial and environmental applications are also included. Highlighting the usefulness and adaptability of these methods for a range of practical applications, this book is a practical guide for both those involved with the design and application of synthetic methodologies and those interested in the implementation and impact of green chemistry principles in practice, from synthetic and medicinal chemists, to food developers and environmental policy planners.
Heterogeneous Catalysis in Sustainable Synthesis is a practical guide to the use of solid catalysts in synthetic chemistry that focuses on environmentally benign applications. Collating essential information on solid catalysts into a single volume, it reveals how the efficient use of heterogeneous catalysts in synthetic chemistry can support sustainable applications. Beginning with a review of the fundamentals of heterogeneous catalytic synthesis, the book then explores the basic concepts of heterogeneous catalytic reactions from adsorption to catalyst poisons, the use of non-traditional activation methods, recommended solvents, the major types of both metal and non-metal solid catalysts, and applications of these catalysts in sustainable synthesis. Based on the extensive experience of its expert author, this book aims to encourage and support synthetic chemists in using solid catalysts in their own work, while also highlighting the important link between heterogeneous catalysis and sustainability to all those interested. Combines foundational knowledge with a focus on practical applications Organizes information by reaction type, allowing readers to easily find examples of how to carry out specific reaction types with solid catalysts Highlights emerging areas such as nanoparticle catalysis and metal-organic framework (MOF) based catalysts
Green chemistry already draws on many techniques and approaches developed by theoretical chemists, whilst simultaneously revealing a whole range of interesting new challenges for theoretical chemists to explore. Highlighting how work at the intersection of these fields has already produced beneficial results, Green Chemistry and Computational Chemistry: Shared Lessons in Sustainability is a practical, informative guide to combining green and theoretical chemistry principles and approaches in the development of more sustainable practices. Beginning with an introduction to both theoretical chemistry and green chemistry, the book goes on to explore current approaches being taken by theoretical chemists to address green and sustainable chemistry issues, before moving on to highlight ways in which green chemists are employing the knowledge and techniques of theoretical chemistry to help in developing greener processes. The future possibilities for theoretical chemistry in addressing sustainability issues are discussed, before a selection of case studies provides good insight into how these interactions and approaches have been successfully used in practice. Highlights the benefits of green and theoretical chemistry groups working together to tackle sustainability issues across both academia and industry Supports readers in easily selecting the most appropriate path through the book for their own needs Presents a range of examples examining the practical implications and outcomes of interdisciplinary approaches
Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability is the first book of its kind to focus on scaling up of microbial electrochemical systems (MES) and the unique challenges faced when moving towards practical applications using this technology. This book emphasizes an understanding of the current limitations of MES technology and suggests a way forward towards onsite applications of MES for practical use. It includes the basics of MES as well as success stories and case studies of MES in the direction of practical applications. This book will give a new direction to energy researchers, scientists and policymakers working on field applications of microbial electrochemical systems¿microbial fuel cells, microbial electrolysis cells, microbial electrosynthesis cells, and more.
Organochalcogen compounds reviews the state of the art in new green protocols involving organochalcogen compounds (Se, S, and Te), including the use of nonconventional reaction media, alternative solvents, and solvent-free protocols to prepare these important compounds. Bringing together several leading researchers in organochalcogen chemistry, it provides an authoritative overview of the current state of the field and compiles recent advances in methodologies for the application of green chemistry principles in compound development. These include the use of organochalcogen compounds as intermediates, catalysts, or target products across a range of applications. The recent developments outlined in in the book reflect the efforts of the researchers in this area to move toward a more sustainable chemistry, giving the book the dual benefit of highlighting the latest developments in the field while also showing how the principles of green chemistry can effectively be included in active research projects. Thus it is a valuable reference for chemists, particularly those working in organic, green, and synthetic chemistry across both academia and industry.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.